
Functional APIs with
GraphQL & Elixir
CODE BEAM LITE BERLIN 2018

About me
● Hubert Łępicki
● @hubertlepicki
● https://www.amberbit.com
● Białystok, Poland

https://www.google.com/url?q=https://www.amberbit.com&sa=D&ust=1539363129763000&usg=AFQjCNEH5S0VMGfXxnszzkv1KhfUz-GFiQ

☕

The history behind it (educated guess)
● Frontend: “We need list of posts with thumbnails and short text”
● Back end: “Ok”
● Frontend: “We need to make thumbnail fetching optional and need author

info”
● Back end: “Ok”
● Frontend: “We need optional list of comments with each post”
● Back end: “You are ruining my API but okay”
● Frontend: “We need….”

Born in 2012

Made public in 2015

What is this GraphQL thing?
● Graph Query Language
● Specification https://facebook.github.io/graphql
● Describes how you query the data you want to retrieve
● Describes how you modify the data
● Describes how you get notified on data changes
● Transport-independent
● Usually used via HTTP API
● Can be used over WebSocket
● Can be used over custom transports
● Can be used within application internally

https://www.google.com/url?q=https://facebook.github.io/graphql/&sa=D&ust=1539363132996000&usg=AFQjCNHCJz3dhg_c02pJVxhMpQ7lnHIfIg

GraphQL in Elixir
● Absinthe GraphQL Toolkit https://absinthe-graphql.org/
● One of most complete GraphQL server-side specification implementations
● Modular “toolkit” architecture, consisting of many small repositories (absinthe,

absinthe_plug etc.)
● Actively worked on & maintained
● Actively used in production
● Good match (esp. subscriptions)
● Sorts out some architectural design problems for your apps for you

https://www.google.com/url?q=https://absinthe-graphql.org/&sa=D&ust=1539363133014000&usg=AFQjCNGzbTBt9Rt4daHnD6Fmw7C4gZjKfA

Time for some examples!

Our database

User

Role

Project

Task

Assignment

Plug.Auth sets @conn.me to %User{id:1, email:”hubert…}

How does it look like?
doc = “””query {
 me {
 id,
 email
 }
}”””

How does it look like?
doc = “””query {
 me {
 email,
 projects {
 id,
 name
 }
 }
}”””

How does it look like?
doc = “””query {
 me {
 email,
 projects {
 id,
 tasks {
 id,
 name,
 completed
 }
 }
 }
}”””

How does it look like?
doc = “””query {
 me {
 email,
 projects {
 id,
 tasks(matching: “deploy”) {
 id,
 name
 }
 }
 }
}”””

How does it look like?
doc = “””query {
 me {
 tasks(completed: false) {
 id,
 name
 }
 }
}”””

How does it look like?
Absinthe.run(doc, MyApp.Schema, context: %{})

=> {:ok, %{data: … }}

=> {:error, errors}

How does it look like?
%{data: %{
 "me" => %{
 "email" => "hubert.lepicki@amberbit.com",
 "projects" => [
 %{"id" => 1,
 "tasks" => [
 %{"id" => "1", "name" => "Deploy to staging"},
 %{"id" => "2", "name" => "Deploy to production"}

]}]}}}

mailto:hubert.lepicki@amberbit.com

Computed fields
query {
 me {
 projects {
 id,
 name,
 completed_percents
 }
 }
}

Computed fields
%{data: %{
 "me" => %{
 "projects" => [
 %{"id" => 1,
 "name" => “Conquering the World”,
 “completed_percents” => 99
 }]}}}

Let’s get our hands dirty!
mix.exs
...
defp deps do
 [...
 {:absinthe_phoenix, “~> 1.4”}]
end

➜ my_app git:(master) ✗ mix deps.get
Resolving Hex dependencies...
Dependency resolution completed:
 absinthe 1.4.13
 absinthe_phoenix 1.4.3
...

Let’s get our hands dirty!
lib/my_app_web/endpoint.ex
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app
 use Absinthe.Phoenix.Endpoint
 ...

lib/my_app/application.ex
 ...
 supervisor(MyAppWeb.Endpoint, []),
 supervisor(Absinthe.Subscription, [MyAppWeb.Endpoint])
 ...

Let’s get our hands dirty!
lib/my_app_web/channels/user_socket.ex
defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket
 use Absinthe.Phoenix.Socket, schema: MyAppWeb.Schema
 ...

Let’s get our hands dirty!
lib/my_app_web/router.ex
 ...
 forward("/api/graphiql", Absinthe.Plug.GraphiQL,
 schema: MyApp.Schema, interface: :advanced)

 scope “/api” do
 pipe_through(:api)
 forward(“/”, Absinthe.Plug, schema: MyApp.Schema)
 end
 ...

Describe your API with Schema
lib/my_app/schema.ex

defmodule MyApp.Schema do
 use Absinthe.Schema

 # list objects
 ...
 # list queries & mutations
 ...
end

Sad news for you
● GraphQL is Object-Oriented
● ...or not really :)

Objects
● Compound types, consisting of one or more fields
● Used for nodes in graph
● RootQueryType
● Me (or maybe User?)
● Project
● Task

Scalars
● Boolean
● Float
● ID
● Int
● String

● Absinthe-specific: :datetime, :naive_datetime, :date, :time, :decimal

Scalars
scalar :my_date do
 parse fn input ->
 case Date.from_iso8601(input.value) do
 {:ok, date} -> {:ok, date} _ -> :error
 end
 end

 serialize fn date -> Date.to_iso8601(date) end
end
* example from Craft GraphQL APIs in Elixir with Absinthe

Types in GraphQL
● Objects
● Scalars
● (and more… Unions, Interfaces, Enumerations...)

...but where is the graph?

The Graph & The Query

me

projects

RootQueryType

Me

Project

Task

tasks

query {
 me {
 email,
 projects {
 id,
 tasks(matching: “deploy”) {
 id,
 name,
 completed
 }
 }
 }
}

The Graph & The Schema

RootQueryType

Me

Project

me

projects

Task

tasks

defmodule MyApp.Schema
 use Absinthe.Schema

 object :me do
 field :id, non_null(:string)
 field :name, non_null(:string)
 field :email, non_null(:string)
 field :avatar_url, :string

 field :projects, list_of(:project)
 end
 ...
end

The Graph & The Schema

RootQueryType

Me

Project

me

projects

Task

tasks

object :project do
 field :id, non_null(:id)
 field :name, non_null(:string)

 field :tasks, list_of(:task) do
 @desc “Searches tasks by string”
 arg :matching, :string
 end

 @desc “Computed on the fly!”
 field :completed_percents, :integer
end

The Graph & The Schema

RootQueryType

Me

Project

me

projects

Task

tasks

object :task do
 field :id, non_null(:id)
 field :name, :string
 field :completed, non_null(:boolean)
end

The Graph & The Response

RootQueryType

Me

Project

me

projects

Task

tasks

%{data: %{
 "me" => %{
 "email" => "hubert@example.com",
 "projects" => [
 %{"id" => 1,
 "tasks" => [
 %{"name" => "Deploy to staging"},
 %{"name" => "Deploy to prod"}

]}]}}}

Schema design

RootQueryType

User

Project

me

projects

Task

tasks

Assignment

Role

owner

Schema design

RootQueryType

Me

Project

me

projects

Task

tasks

AssignedUser
assigned_users

UserProfile

ProjectMember
project_members

tasks

UserProfile fields + role

email, name, avatar_url

lib/my_app/schema.ex
defmodule MyApp.Schema do
 use Absinthe.Schema

 object :me do
 field :id, non_null(:string)
 field :name, non_null(:string)
 field :email, non_null(:string)
 field :avatar_url, :string
 field :projects, list_of(:project)
 field :tasks, list_of(:tasks)
 end
 ...

lib/my_app/schema.ex
 ...
 object :project do
 field :id, non_null(:id)
 field :name, non_null(:string)
 field :tasks, list_of(:task) do
 arg :matching, :string
 end
 field :completed_percents, non_null(:integer)
 end
 ...

lib/my_app/schema.ex
 ...
 object :task do
 field :id, non_null(:id)
 field :name, :string
 field :completed, non_null(:boolean)
 end

 query do
 field :me, :me
 end
end

lib/my_app/schema.ex
 ...
 query do
 field :me, :me do
 resolve fn _parent, _args, _resolution ->
 {:ok, %{id: 1, name: “Hubert Łępicki”,
 email: “hubert.lepicki@amberbit.com”,
 avatar_url: “http://example.com/hub.png”}}
 end
 end
 end
end

mailto:hubert.lepicki@amberbit.com

lib/my_app/schema.ex
 ...
 query do
 field :me, :me do
 resolve fn _parent, _args, _resolution ->
 {:ok, Repo.get(User, resolution.context.user_id)}
 end
 end
 end
end

lib/my_app/schema.ex
 ...
 field :me, :me do
 resolve fn _parent, _args, _resolution ->
 {:ok, %{id: 1, name: “Hubert Łępicki”,
 email: “hubert.lepicki@amberbit.com”,
 avatar_url: “http://example.com/hub.png”,
 projects: [%{
 id: 1, name: “First project”,
 tasks: [%{id: 1, name: “First task”}]

 }]}}
 ...

mailto:hubert.lepicki@amberbit.com
https://www.google.com/url?q=http://example.com/hub.png&sa=D&ust=1539363133757000&usg=AFQjCNGyAyZmHTFiWRRCIdwjpL7TsQxX5A

lib/my_app/schema.ex
 ...
 object :me do
 ...
 field :projects, list_of(:project) do
 resolve fn _parent, _args, _resolution ->
 {:ok, [
 %{id: 1, name: "First project"}
]}
 end
 end
 end
 ...

lib/my_app/schema.ex
...
mutation do
 field :create_project, type: :project do
 arg :name, non_null(:string)

 resolve &Resolvers.Projects.create/3
 end
end
...

Phoenix integration
@graphql """
 query Index @action(mode: INTERNAL) {
 me @put {
 projects
 }
}
"""
def index(conn, result) do
 render(conn, "index.html", projects: result.data.projects)
end

Problem #1: N+1 queries
● can be reduced with smart schema design
● cannot be avoided
● can use `batch` with custom Project.by_ids function
● can use Dataloader with Project, Task etc. as sources
● ^^^ generate SQL IN(...) queries. One query per level.
● can also preload data yourself in top-level resolvers
● look ahead into `resolution.path` to see what’s been requested
● use Ecto join + preload to load up data in single query

Problem #2: We’re building DOS endpoint
● Denial of Service
● easy to craft queries that will attempt to load a lot of data
● if you have loops in your schema, you are vulnerable

query {

 me {
 projects{
 name,
 users {
 email,
 projects {
 name,
 users {
 ...

Problem #2: DOS prevention
● absinthe has built-in query complexity analysis phase
● give each field / edge complexity
● sums up complexity of overall query
● disallow queries with complexity > MAX_COMPLEXITY
● timeouts & memory limits on resolver processes

Problem #3: Caching
● all queries go to POST /api
● HTTP caching is easier with GET requests
● client-side caching is easy (Apollo!) - need to provide & ask for IDs
● server-side caching blow HTTP layer (in-app)
● use Automatic Persisted Queries (APQ), sent via GET

Problem #4: Hostile developer environments
● JavaScript is bad but could be worse
● Apollo is actually super awesome
● Absinthe is equally super awesome
● Not everyone is so lucky
● Poor/incomplete/outdated implementations are common
● Good Elixir GraphQL *client*?
● Non-dynamic languages often require code generation (sigh)
● Mobile app developers usually hate GraphQL (because of above)
● Can use your GraphQL queries to build REST API if required (sigh)

Questions?

Thanks!

