

ERLANG SCALES ROBOTS

NATALIA CHECHINA

NCHECHINA@BOURNEMOUTH.AC.UK

@NCHECHINA

0

Ò

 \bigcirc

 \cap

12 OCTOBER 2018

WHO AM I...

- Lecturer in Computing at Bournemouth University, UK
- Research interest Scaling distributed systems reliably
- Students and colleagues from Glasgow University

AUTONOMOUS DEVICES

- Not "classical" distributed systems
- Lower and less stable communication
- Limited computation resources
- Limited power resources
- A single robot can be a network of devices

COOPERATIVE ROBOTICS

- Pack of autonomous devices
- Not swarm robotics
- Complex devices capable of various tasks
- Robots cooperate with other robots
 - similar architecture
 - different architectures
 - human operators
- Contribute to a common goal

ROBOT OPERATING SYSTEM

- Since 2007 simplifies the creation of complex robot behaviour across a wide variety of robotic platforms
- A de facto standard collection of
 - Tools
 - Libraries
 - Conventions

Open Source Robotics Foundation

NO SINGLE INDIVIDUAL, LABORATORY, OR INSTITUTION CAN HOPE TO DO IT ON THEIR OWN

...ROS

PURPOSE

- Access to
 - Hardware drivers
 - Generic robot capabilities
 - Development tools
 - External libraries
 - etc...
- Systems may use as much or as little of ROS
- Encourage collaborative development of robotics software

...ROS

OVERVIEW

- Distributed Modular Design
- Open source

С

- Shared development of common components
- Publish/subscribe message passing
 - Any node can subscribe to any other node
- Master node
 - Registration of all nodes

ROS is not scalable and is not fault tolerant

...ROS

REASONS

Scalability

 \square

- Master node
- ROS was not designed for scalability
- Fault tolerance
 - ROS was not designed for reliability
 - roslaunch

How scalable is ROS?

SCALABILITY OF ROS

SINGLE HOST

- Latency
- Throughput

Message size

- Language: C++ vs. Python
- Message send frequency

- Processor: Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz × 4
- Memory: 15.6GB
- Operating System: Linux Mint 18 Cinnamon 64-bit.
- Linux Kernel: 4.4.0-43-generic.
- Python version: 2.7.12
- GCC version: 5.4.0
- ROS distribution: kinetic
- rospy and roscpp version: 1.12.5

• Message queue size

- Language: C++ vs. Python
- Message send frequency

- Processor: Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz × 4
- Memory: 15.6GB
- Operating System: Linux Mint 18 Cinnamon 64-bit.
- Linux Kernel: 4.4.0-43-generic.
- Python version: 2.7.12
- GCC version: 5.4.0
- ROS distribution: kinetic
- rospy and roscpp version: 1.12.5

- Message queue size
- Language: C++ vs. Python
- Message send frequency

- Message queue size
- Language: C++ vs. Python
- Message send frequency

SCALABILITY OF ROS

MULTIPLE HOSTS

http://www.dcs.gla.ac.uk/research/rosie/blog.html

2

MULTIPLE HOSTS

- Scope experiments
- Representative data experiments
- Vertical experiments

MULTIPLE HOSTS: VERTICAL SCALABILTY

MULTIPLE HOSTS: VERTICAL SCALABILITY

• Hosts

- Raspberry Pis
- Car kit robots
- Representative data
- Wi-Fi connection

MULTIPLE HOSTS: REPRESENTATIVE DATA

- Collected January 2011 -- September 2012
- Comprises over 2.3TB
- Sensor data
- Video data

MULTIPLE HOSTS: REPRESENTATIVE DATA

- Sensor data
 - 20Hz message stream
 - 85kB/s of bandwidth
 - Individual message size = 4.25kB

- Video data
 - Kinect RGB + depth camera
 - 30Hz (30 frames-per-second)
 - RGB (colour) video stream
 - Resolution of 640480 pixels
 - 9.25MB/s of bandwidth
 - Message size = 308KB

MULTIPLE HOSTS: VERTICAL SCALABILITY

100Hz Message Frequency 45000 40000 2 Nodes 35000 Message Latency (ms) 4 Nodes 30000 8 Nodes 16 Nodes 25000 32 Nodes 20000 64 Nodes 15000 128 Nodes 256 Nodes 10000 5000 0 200 400 600 800 1000 1200 0 Message ID

0

HROS

@NCHECHINA

• SCLV -- Communication Scaling Limit Volume

- **N** -- number of sending nodes on the host
- *f_m* -- message frequency
- **S**_m -- message size

FAULT TOLERANCE OF ROS

HROS

P

Ç

QUALITY VARIATIONS WITH WORKER FAILURES

IIIROS

SCALE ROS AND INTRODUCE FAULT TOLERANCE

SCALE ROS AND INTRODUCE FAULT TOLERANCE

KERL

University of Kent

- Kent Erlang Robotic Library for Player (open source robot middleware)
- Practical way of teaching Erlang
 - Programming a popular robot simulator in Erlang
 - Visual and attractive teaching of functional languages
 - Physical robots and simulation framework

ROSEN

- Research from 2005
- Aim: Complete robotic framework in Erlang
 - For a set of robots for Eurobot competition
 - From low-level (control layers)
 - To higher-level (interpretation layers)
- + Simulation engine

UNIVERSITÀ degli STUDI di CATANIA

OPENRTM-AIST PROJECT

- Open source robotic middleware
- Based on CORBA (Common Object Request Broker Architecture)
- Provides communication services to sensor and control programs
- Initial goal:
 - To develop Erlang tool for the monitoring and orchestration of a network of OpenRTM-aist components
- Supports Erlang (unofficially)

CRITERIA OF SUCCESS

- Adopted by roboticists
 - Easy to use e.g. programming using Python, APIs
 - Enables to focus on a robotics issue rather than the code
 - Large community of contributors and user from both industry and academia
 - State-of-the-art libraries, techniques
- Modular approach
- In industry
 - Performance
 - Fault tolerance
 - Security
 - Developers

OUR IDEA

@NCHECHINA

To replace communication layer

- Only replace the bit that does not work
- Intra-robot and inter-robot communication

ROS VS. ERLANG

@NCHECHINA

О

 \bigcap

The most widely used Robot Operating System

VS.

"Let it crash" using Erlang programming language

QUALITY VARIATIONS WITH WORKER FAILURES

Ground truth __SIGTERM __SIGKILL 50%

IIIROS

Erlang

A. Lutac, <u>N. Chechina</u>, G. Aragon Camarasa, and P. Trinder. *Towards Reliable and Scalable Robot Communication*. In the Proceedings of the 15th ACM SIGPLAN Workshop on Erlang, pp. 12--23, Nara, Japan, 2016

QUALITY VARIATIONS WITH WORKER FAILURES

IIIROS

Erlang

- Reduces robot component downtime
- Mitigates negative impact of failures

A. Lutac, <u>N. Chechina</u>, G. Aragon Camarasa, and P. Trinder. *Towards Reliable and Scalable Robot Communication*. In the Proceedings of the 15th ACM SIGPLAN Workshop on Erlang, pp. 12--23, Nara, Japan, 2016

WHAT'S NEXT?

- H2020 proposal
- GRiSP boards
 - Robots and IoT devices
 - Erlang VM on bare metal
- Autonomous mobility and load distribution

Engineering and Physical Sciences Research Council

THANK YOU!

nchechina@bournemouth.ac.uk

@nchechina

https://staffprofiles.bournemouth.ac.uk/display/nchechina