
Using	Property-Based	Testing	in	
Blockchain	applications	

Thomas	Arts	

A	node	in	a	distributed	network	

A	node	in	a	distributed	network	

A	node	in	a	distributed	network	

A	node	in	a	distributed	network	

A	node	in	a	distributed	network	

A	node	in	a	distributed	network	

A	FORK	

Testing	challenges	

A	complex	distributed	system,	the	usual	
challenge	of	infinitely	many	possible	states	
	
For	example:	synchronization,	different	kinds	of	
transactions,	unpredictable	order	of	events,	
cryptography	hard	to	mock,	...	
	

QuickCheck

London	2018	 15	

Instead of writing test cases....
they are automatically generated from properties

Useful for
Unit Testing, Component Testing, System Testing

Less work, better testing, more fun

QuickCheck	in	a	Nutshell	

Properties	
Test	
case	
Test	
case	
Test	
case	
Test	
case	Test	case	

Minimal	
Test	case	

QuickCheck	

API	
under	
test	

A	minimal	failing	
example	

DEMO	

Property	based	testing	

Blockchain	properties	
	
Forall	sequences	of	transactions:	the	total	
amount	of	tokens	in	the	chain	stays	the	same	
	
Invalid	transactions	are	not	accepted	on	the	
chain	(e.g.	too	low	fee,	too	little	in	account,	etc)	

Property	based	testing	

Distributed	system	
	
Forall	possible	net-splits,	crashes	and	forks,	if	
network	is	stable	long	enough,	nodes	agree	
upon	chain.	

Conclusions	

Blockchain	testing	
•  generated	tests	found	many	corner	cases	
•  on	system	level	easy	to	add	one	feature	and	
test	thousands	of	new	tests	including	feature	

•  hard	to	mock	crypto	
	

Questions	

•  https://aeternity.com/	
•  https://github.com/aeternity/epoch/	
•  https://github.com/Quviq/epoch-eqc	

A	node	in	a	distributed	network	

synchronization	

