
The Yin and Yang
of Mutability
Péter Gömöri

CodeBEAM SF - San Francisco (6 March 2020)

We help companies scale

● BEAM applications
● DevOps: CICD pipelines, Cloud infrastructure
● Adtech/Martech custom development
● Digital transformation

Experts in:

Atomic counters

very mutable

Yin and Yang

Persistent terms

very immutable

Philosophy and history

In the beginning there was Pure Erlang...
● All data was immutable
● No data was shared
...and it was good

Genesis

● Much easier concurrency
● Easier GC (no forward pointers)
● Simpler to understand and reason about

(with the right mindset :))

Price:
● Lots of mem alloc and copying

Advantages

But human was greedy and wanted more...
● Write intensive ⇒ mutability
● Read intensive ⇒ share

Compromise for performance

● Off-heap binaries: shared, can be appended in place
(if only 1 reference)

● ETS: table abstraction, no process overhead
(still copy to/from, still could be a GenServer)

● ETS counters: "atomic" update of values (no get+put)

Nicely wrapped abstractions besides a consistent language

Cracks in the wall

● My experience: folsom 5% cpu
● Constant overhead: table indirection, temp allocs for new

value, etc
● Concurrency overhead: lock contention

even if write_concurrecy=true

● Irina Guberman CBSF 2018, Andy Till’s oneup lib

ETS counters, still not enough

Atomics, Counters

● 64 bit ints, signed/unsigned, overflow/underflow
● Mutable in place
● Shared (not owned by 1 proc, similar to off-heap bins)

● All ops atomic: eg.: add_get, exchange, compare_exchange
● Array of independent values

atomics:new(Arity, [])

Atomics

● No locks, no memory barriers (native CPU instr’s)
● Exposes already existing ERTS internal API (OTP 18, R15B01)

● Used by eg:
○ reference type
○ time handling
○ internal metrics (sched util, io bytes)

Atomics internals

● 1 step higher abstraction
● smaller API: add, sub, get, put
● backend: atomics or write_concurrency

Counters

Further optimised for efficient concurrent writes
● 1 atomics per scheduler + 1 for base value

(each in separate cache lines)

● Price: read inconsistency
● Only writes atomic

Write-concurrency counters

● atomics:new ⇒ magic ref
● How all procs get counter ref?
● Unnamed - need registry

Atomics/counters reference

Persistent terms

● Globally shared key-value store
○ Concurrent, constant time reads (no locks, no copy)
○ Slow and globally expensive writes

● Simple API: put/get/erase
● Store unchanging: unnamed references, config structures,

flags, feature switches

Persistent terms

f(A) ->

 Lit = [11, <<"str">>],

 {A, Lit}.

Literals

{test_heap,3,1},

{put_tuple,2,{x,1}},

{put,{x,0}},

{put,{literal,[11,<<"bin">>]}},

{move,{x,1},{x,0}},

return]},

● Code constants

● Code load time: per module constant pool
● No-copy usage
● Module unload:

○ free constant pool
○ requires some housekeeping...

Literals

● mochiglobal/FastGlobal (abusing literal pool)

● eg.: Elixir regexp sigil, compiled pattern (real, plain binary)
● Runtime terms: PIDs, ports, Refs (not literals per se)

eg.: ETS TIDs (fake literals)

● official solution: PT supports all terms

Persistent term vs
code generation

Persistent term - put

NIL

ptr

NIL

...

NIL

hash(key)

literals

 {key, value}

Persistent term - get

NIL

ptr

NIL

...

NIL

hash(key)

literals

 {key, value}

proc

 variable

Persistent term - erase

NIL

NIL

NIL

...

NIL

literals

 {key, value}

proc

 variable

 value

● Any insert/update/delete will copy table
(similar to updating tuple)
Proportional to size of table

● Copy inserted term from heap
(sharing-preserving copying)

Persistent term - update

Update/delete
(similar to unloading a module)

● Some procs still use old value
● Will scan all procs
● Will copy “complex” term to proc heap and trigger GC

(can hit max heap size and kill proc)

Persistent term - update

● Immediates (terms that fit in 1 word)
No GC: replace pointer with value on proc heap
(eg.: OTP logger default log level)

● From OTP 23 no table copy, if no need to grow/shrink

PT update - Optimisations

● Only 1 process can update at a time
(no write_concurrency)

● Queue of processes waiting to update the hash table
● Only 1 key update at a time

(use maps/tuples for multiple values)

PT update - Limitations

● It's truly global (libraries have to share)
○ Use namespaced keys

○ An update by a lib affects other libs/apps/all procs

● One lib has no control over
○ The total size of the hash table

○ The total number of processes in the system

⇒ no idea about update impact

Danger of PT update

Atomic counters

concurrent writes

Apples vs oranges

Persistent terms

single process to update
(the whole table)

Atomic counters

read inconsistency
(write_concurrency)

Apples vs oranges

Persistent terms

super-cheap, no copy reads

Atomic counters

ets counters
off-heap binaries

Apples vs oranges

Persistent terms

proc dict
ets table

● Long awaited by the community
● No more hacks and NIFs
● More confidence in usage
● Just be careful

Summary

● Rickard Green, Patryk Nyblom: "Taking a Virtual Machine towards Many-Core"
(EUC 2012)

● Irina Guberman: "High Performance Metrics Through Mutable Counters"
(CodeBEAM SF 2018)

● Lukas Larsson: "OTP 22 Highlights", " Clever use of persistent_term"
(Erlang/OTP Blog)

References

Thank you!

Benchmarks

Erasing one by one 10_000 entries takes
(processes have no references to PT)

● ~5s with ~50 processes in the system
● ~6.5s with ~100 procs
● ~9.8s with ~1000 procs
● ~18s with ~10_000 procs

Impact of PT update

20 procs bumping counter for 5 seconds
Counter reference updated in PT N times
● 0: 266M bumps
● 1: 264M bumps (99%)
● 5: 263M bumps (98%)
● 10: 256M bumps (96%)

Impact of PT update

Initialization
● :ets.new(__MODULE__, [:public, :named_table,

 write_concurrency: true])

● :persistent_term.put({__MODULE__, ctr},

 :counters.new(1, [:write_concurrency]))

Concurrent counters

Increment
● :ets.update_counter(__MODULE__,

 {ctr, :erlang.system_info(:scheduler_id)}, 1)

● :counters.add(

 :persistent_term.get({__MODULE__, ctr}), 1, 1)

Concurrent counters

Counter bumps in 5 seconds - 20 processes (8 cores)
● ets: 104M bumps
● pt+counters: 251M bumps (240%)

Concurrent counters

Counter bumps in 5 seconds - 1 process
● :ets.new(__MODULE__, [:private, :set]).

● :counters.new(1, [:atomics]).

● 81M bumps :ets.update_counter(tid, :counter, 1).
● 201M bumps (247%) :counters.add(ref, 1, 1).

Atomics

Histogram bumps in 5 seconds - 1 process
● :ets.update_counter(h.table, h.metric,

 [{@total_cnt_idx, n},

 {index + @total_cnt_idx + 1, n}])

● :atomics.add(h.ref, @total_cnt_idx, n)

:atomics.add(h.ref, index + @total_cnt_idx + 1, n)

● ets-based 21M bumps
● atomics-based 30M bumps 142%

Histogram with atomics

Histogram bumps in 5 seconds - 1 process
● ets-based: 21M bumps
● atomics-based: 30M bumps (142%)

Histogram with atomics

