
TESTABLE
HIGH-PERFORMANCE

LARGE-SCALE
DISTRIBUTED ERLANG

Christopher S. Meiklejohn

Heather C. Miller

Peter Alvaro

MOTIVATION
What are actors used for and

what are the problems with

actors?

MOTIVATION

Distributed systems programming is still very hard:

 How to manage state?

 How do we manage concurrency?

 How do we leverage parallelism?

Distributed actors are good! (and, a good match to distributed systems, too!)

 Encapsulation for state

 Pervasive concurrency – thousands of actors working together

 Asynchronous messaging – no shared memory between actors

Demonstrated success:

 Erlang: Call of Duty, League of Legends, WhatsApp

 Orleans: Halo, Gears of War

Modern actor systems are still limited in terms of both scalability and latency!

ACTOR EXAMPLE: DISTRIBUTED ERLANG

Send a message to destination process

identifier.

Wait for a response until timeout and

return either the response or error.

Spawn actors running functions that

message other actors.

DISTRIBUTED ACTORS: TODAY’S DESIGN

All nodes communicate with all other nodes.

 Nodes run actors that can communicate with other actors

 Transparent messaging

Nodes maintain open TCP connections.

 Heartbeat other nodes to detect failure

 Actors considered failure under partition or node failure

DISTRIBUTED ACTORS: TODAY’S DRAWBACKS

Scalability

 All-to-all communication is expensive and prohibitive

 Nodes need to know about all other nodes

Latency

 Multiplexed TCP connection is a bottleneck

 Many actors reduced to a single connection’s speed

 Congestion:

 network latency, queueing delay

 Contention:

 competing for shared resources, slow-sender vs. fast-sender

PARTISAN Improving the scalability of

distributed actor systems.

PARTISAN

Design of an alternative runtime system for distributed actor systems

 Design and prototype implementation in Erlang

Runtime selection of communications overlay network

 Specialize overlay selection to communications pattern of application

 No modification to application code

Provides reduced latency and increased scalability

 Enable parallelism on the network

 Schedule messages efficiently on the network

PARTISAN: API
Simple transformation for existing

applications to use Partisan.

1-to-1 correspondence in API

CAVEAT EMPTOR

References

 Unique references generated by BEAM, guaranteed globally unique

 Not serializable presently because deserialization tied to Distributed Erlang

 Lots of platform-agnostic alternatives: Snowflake IDs, Logical Clock derivatives (HLC, etc.)

Closures

 Subject of my Ph.D. advisor’s thesis

 Serialization tied to Distributed Erlang

 When are these safe to capture?

 No support for sending closures at the moment

Hi!

IMPROVING SCALABILITY
There’s no “one-size-fits-all”

overlay for distributed

applications.

OVERLAY SELECTION

No “one-size-fits-all” topology
 Rigidity of the full-mesh overlay assumes one

application design

 Not necessarily true for modern applications (mobile,
IoT)

Selection of overlay at runtime
 Select the runtime based on the communication

pattern

 Full-mesh, Client-server, Peer-to-peer, Publish-
subscribe.

Tradeoffs
 Redundant, large-scale overlays more expensive in

transmission but support more clients
Select the overlay network desired.

CLIENT-SERVER OVERLAY

Client nodes communicate with server nodes.

Server nodes communicate with one another.

Point-to-point messaging through the server.

 Server routes messages on clients behalf

Nodes maintain open TCP connections.

 Considered “failed” when connection is dropped.

User NameUser Name User Name User Name

Typical communication pattern in mobile and

web applications today.

PEER-TO-PEER OVERLAY

Supports large-scale networks (10,000+ nodes)

 Built on existing protocols: HyParView, Plumtree, Cimbiosys

Nodes maintain partial views of the network

 Active views form connected graph

 Passive views for backup links used to repair graph under failure

Nodes maintain open TCP connections.

 Considered “failed” when connection is dropped.

 Some links to passive nodes kept open for “fast”
replacement of failed active nodes

Point-to-point messaging for connected nodes.

 Spanning tree lazily computed and used for routing messages
transitively to the final recipient

EVALUATING SCALABILITY
There’s no “one-size-fits-all”

topology for distributed

applications.

ROVIO / ANGRY BIRDS

Advertisement counter (SyncFree, EU-FP7)

 Each mobile device keeps track of a counter of times displayed

 Modeled as a convergent data structure for distributed counting

 Periodically, synchronizes with other peers

 Authored using the Lasp programming model (PPDP ’15)

Specialize the overlay network at runtime

 Evaluate which overlay can support the most clients

 Two evaluated: client-server vs. peer-to-peer

 Not evaluated: full-mesh (unrealistic for mobile application)

SCALING LASP, P2P KVS: TRADEOFFS

Peer-to-peer scales to larger sizes by

reducing bottleneck / centralization.

Client/server transmits less data due to

centralization and lack of redundancy.

SUMMARY: IMPROVING SCALABILITY

Enables the use of actor systems for larger-scale applications

 Different overlays enable larger number of clients

 Overlays allow more traditional communication patterns for mobile applications

 May be suitable for “Internet of Things” applications

Performance optimizations

 Supported by all topologies

Prototype

 Peer-to-peer topology adopted by community members

 Used on hardware devices in LightKone EU-H2020 project on edge computing

IMPROVING LATENCY
Techniques for latency reduction

by enabling parallelism of the

network.

IMPROVING LATENCY

Head-of-line blocking
 Background cluster messages for maintenance, failure detection, cluster membership, etc.

 Application-behavior blocked and/or delayed

Queueing delay
 Fast-senders vs. slow senders

 High-latency: delay in transmission, when available bandwidth for parallelism

 Large-payload: other senders are blocked during transmission and serialization/deserialization

Can we use knowledge from actors?
 Act sequentially

 Have identities and send to actors by identity

NAMED CHANNELS

Enable multiple TCP connections between
nodes for segmenting traffic.

Alleviates head-of-line blocking between
different types of traffic and destinations.

Beneficial for isolating background
maintenance traffic from application-specific
traffic.

gossip gossip

object object object

All we require is programmers to annotate the type of message when

sending a message to another actor.

AFFINITIZED PARALLELISM

Enable multiple TCP connections between
nodes for increased parallelism.

Partition traffic using a partition key.

 Automatic placement (using process identifier)

 Manual partitioning (using user-specified partition key)

Beneficial for separating slow-senders from
fast-senders

P1 P1

P2
P3 P2

Messages for P1 always routed through

connection 1.

Automatic, given process identifier or with

an annotation from the programmer if using

a different key.

PROGRAMMER ANNOTATIONS

Channels

 Specify channel name

Affinitized scheduling

 Specify partition key

Override parameters, if necessary.

EVALUATING LATENCY
Techniques for latency reduction

by enabling parallelism on the

network.

BASELINE VS. OPTIMAL PERFORMANCE: 1MS

1.9x improvement!

Performance improvements beat

distributed Erlang in normal case.

QUEUE MAINTENANCE OVERHEAD

33x increase! (2485ms)

INCREASED LATENCY MESSAGING: 20MS

13.4x improvement!

INCREASED PAYLOAD MESSAGING: 8MB

3.7x improvement!

EVALUATING LATENCY: RIAK CORE
Techniques for latency reduction

by enabling parallelism on the

network.

ECHO SERVICE: 1MS

Roughly similar performance to

Distributed Erlang!

3.10x improvement!

ECHO SERVICE: 20MS

7.21x

improvement!

34.96x

improvement!

Only 5 ops/s with Distributed Erlang!

KVS SERVICE: 1MS

Roughly on-par with

Distributed Erlang.

1.4x improvement!

KVS SERVICE: 20MS

1.8x

improvement!

95 ops/s for Partisan with large

payloads!

Only completes a single operation for

the duration of the experiment!

SUMMARY: IMPROVING LATENCY

Performance on-par with Distributed Erlang

 Can achieve similar, if not better, performance in designed case

 Distributed Erlang is designed for single AZ/region

Enable new types of applications

 Large data-centric workloads

 Geo-distributed applications (multi-AZ, possibly multi-region)

 Combination of both

Prototype

 Validated on real-world programming framework

 Some adoption of our library

PARTISAN V3 What’s coming in the next

version of Partisan?

PARTISAN V3 IMPROVEMENTS

Membership Strategies
 DSL for implementing membership protocols

 3 implementations: Scamp, HiScamp (in progress), Cyclon

 Connection maintenance is automatic, user only has to handle membership events

Orchestration
 Auto-clustering using Mesos, Docker Compose or Kubernetes

 Partisan will automatically discover peers and cluster them

Example Applications
 2PC, 2PC+CTP, 3PC, Gossip (3 variants)

Performance and bugs fixes.
 Many performance improvements and bug fixes

X-BOT: ORACLE OPTIMIZED OVERLAYS

10

1

2

4-step optimization pass for replacement of nodes

in the active view with nodes in passive view.

(for random selection of active members)

Not all links have equal cost – with cost

determined by outside “oracle.”

Reduce dissemination latency by optimizing

overlay accordingly – swap passive and

active members.

CAUSAL ORDERING

Ensure messages are delivered in causal order

 FIFO between process pairs of sender/receiver

 Holds transitively for sending and receiving messages

A B

C A

Prevent C being received prior to A.

Important for overlays where message might not

always take the same path!

(ie. HyParView, etc.)

RELIABLE DELIVERY

Buffer and retransmit messages using
acknowledgements from destination

Per-message or per-channel

At-least-once delivery (to the application)

Needed for causal delivery where a dropped
message might prohibit progress

P1M2 P1M1

P2
P3

Messages for P1 are periodically

retransmitted until acknowledged.

P1M1

MESSAGE INTERPOSITION

Pre-Interposition

Interposition

Post-Interposition

Invoked when a message enters the system.

Invoked for each message, returns modified content.

Records result of transformation.

Message Processing Pipeline

Incoming Message

Actor

Dynamic instrumentation, enabled at runtime.

Reorder messages.

Rewrite message content or drop message.

Record result of message processing.

TRACING, DEBUGGING AND REPLAY

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Test

Trace

Start with unit test.

Generate trace of

execution.

Deterministic replay of

execution.

Distributed applications are ubiquitous,
everyone’s writing them!

However, distributed applications are
still very difficult to write because
servers can crash and messages can be
lost!

Do you know what your application
will do if a message is lost? What if
the application server crashes in the
middle?

VERIFYING RESILIENCE Verifying your application runs

correctly under failure.

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite

Existing applications using

Partisan get failure injection

‘for free.’

Users provide a PropEr model

of their application.

Schedules are deterministic,

therefore can be saved in a

regression suite.

Stock models available:

Reliable Broadcast, Linearizability, etc.

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite

Deterministic replay with full

tracing, some minimization

possible a la ‘shrinking.’

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite
Message ordering, message omission,

ingress/egress delay, network partitions, message

corruption (Byzantine), crash failures.

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite

Application model can provide “custom” faults, too.

e.g. Riak: disk loss, bit flips, etc.

Application

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite

Containerized Application

Container ContainerContainer Container

Container ContainerContainer Container

Container ContainerContainer Container

Kubernetes

Container runs 100 test

executions.

Containers orchestrated by

Kubernetes.

Laptop

Counterexamples downloaded to

laptop to local debugging.

Application

Partisan

Application

Partisan

Application

Partisan

N1 N2 N3

Partisan Fault Injector
PropEr

Application Model
Counterexample

Regression Suite

Ported Riak Core to Partisan,

built a custom KV store.

Built a model to verify strong consistency, causal

consistency, and eventual consistency.

Discovered several bugs in the key-

value store under network

partitions.

join n1 n2 : OK

join n1 n3 : OK

n1 write x 1 : OK

n1 read x 1 : OK

n1 read x 1 : OK

fault partition { n1 } { n2 n3 }

n1 read x 1 : TIMEOUT

join n1 n2 : OK

join n1 n3 : OK

fault egress_delay n2 n1

fault egress_delay n3 n1

n1 write x 1 : TIMEOUT

fault resolve_all

n1 read x 1 : 1

join n1 n2 : OK

join n1 n3 : OK

n1 write x 1 : OK

fault byzantine n2 bitflip

n1 read x 1 : FAIL, {1, -1}

Counterexample 1:

Partition causes quorum

unavailability.

Counterexample 3:

Parity bit flip error at node 2

returns disagreeing value.

Counterexample 2:

Unacknowledged write visible

because of timeout.

PropEr

Application Model

Model contains incorrect assumption that all reads should

return the value of the most recent successful write.

Will random execution find all of the
failures in my application?

2PC has only one failure case,

manifesting itself in 3 schedules out of 4,096 possible schedules.

(This considers possible omissions, not reorderings!)

3PC has one failure case that appears in a few schedules.

(From a total of 216,522 schedules, not considering reorderings.)

In short, no. To do that, we would
need to search the entire execution
space systematically.

But, we’re working on this too!
So, stay tuned!

CONCLUSION Bringing it all back home.

CONCLUSION

Runtime system for improved scalability and reduced latency for distributed actors
 Prototype implementation with adoption in Erlang

 Uses techniques of parallelism, affinitized scheduling, and named channels

 Specialization of overlay network at runtime without change to semantics

Performance and Scalability
 Up to 34.9x improvement in throughput

 Up to 13.4x reduction in latency

 Order of magnitude in cluster size

Partisan v3
 Coming soon, new overlays, fault-injection, bugs fixes, and more!

Thanks for coming!

You can find me on twitter at @cmeik!

Have any questions?

Come and talk to me about
how I can help your company
with high performance distributed
Erlang and fault-injection!

🎉👏👍😎✌

