
Why time is evil in
distributed systems and

what to do about it
CodeBEAM 2019 keynote

May 16, 2019

Peter Van Roy
Université catholique de Louvain

Overview
�  Motivation: understand the essential effect of time

�  Time is subtle: sometimes it makes a difference, or not

�  Examples of distributed programs
�  Client/server, other distributed algorithms

�  How to design with interaction points
�  Distributed functional concurrency
�  Multi-agent concurrency
�  Client/server redux

�  Case study: eventual consistency

�  Conclusions and advice for system designers

Gnosticism

Observable universe

Created by the demiurge
(with space and time)

Pleroma

World of ideal forms
(without space and time)

Humans must
build a bridge
to the pleroma

“Time is the breath of the demiurge.
And all his creation, the expansion of the
universe, the evolution of species, the
gradual development of his plan, could
not occur without time. According to the
Gnostics, the time-breath of the
demiurge is as satanic as matter and as
satanic as the demiurge himself.”

– “The Forbidden Religion” by José M. Herrou
Aragón

Motivation

Poker and chess
�  Programming is superficially like mathematics, but

there is a fundamental difference between the two
�  Programming is only interesting because computers

run in the real world, whereas mathematics is a purely
formal game of symbol manipulation

�  “Programming is to mathematics as poker is to chess”
�  Poker is only interesting when real money is involved

�  What real-world property is vital for programming?
�  It is time

We will build a bridge…
�  …between two research communities

�  Distributed systems
�  Programming languages

�  There is not much interaction between the two
�  Work on distributed abstractions, not much more
�  The communities do not understand each other

�  In this talk we will make a deep connection
�  We will apply language theory in a fundamental way

to build better distributed systems
�  It is surprising what a difference it can make

Functional programming
�  Confluent reduction of an initial expression to a final result

�  This has very strong mathematical properties that we can use
�  For reasoning, debugging, testing, optimization, and maintenance

�  For concurrency, parallelism, and distribution

�  And there is no efficiency penalty compared to other paradigms

�  But it can’t interact with the real world! Let’s see why:
�  During the execution, we would like to accept inputs coming from

the real world and outputs going back to it
�  Functional programming can’t do this because the execution of a

functional program is a step-by-step reduction of an initial expression to a
final result. Reduction steps take time, and the inputs will arrive during
this time. The reduction can’t use them unless we could put them in the
initial expression. But we can’t do this, because the inputs are not known
in advance.

Imperative programming
�  To interact with the real world, we need to add

something to functional programming
�  A way to receive an input during execution

�  This lets us interact with the real world, but in the
same breath we give up the good properties of
functional programming

�  Can we have our cake and eat it too? Both the good
properties of functional programming and interaction
with the real world?
�  No we can’t! So what can we do…?

The solution
�  Write most of the program with functional programming

�  And add small pieces of imperative programming only in
those places that interact with the real world

�  Usually there are only a very few such places, so we keep
most of the advantages of functional programming

�  We can use this to improve existing systems too…
�  Existing systems are often not designed like this! They do

way too much imperative programming. (Older systems
like Java are especially bad.)

�  This gives us a measure to judge how well existing systems
are designed (and a way to improve them)

Some examples

Client/server
�  A client/server cannot be written in

pure functional programming

�  To satisfy client liveness, the server
must accept each incoming request
in reasonable time

�  The order of the requests cannot be
determined in advance because it
depends on the clients’ timing

�  So the program is nondeterministic
�  There is exactly one point where the

program depends on exact timings,
namely where the server receives
messages

Server

Client 1

Client 2 This point is
a real-world
interaction!

Interaction point = part of system where timing affects the result

Interaction points
are everywhere

�  Reliable broadcast (i.e., all or none broadcast): Has no interaction point

�  Shared registers: Linearizability has no interaction point. However, sequential
consistency and regular registers can introduce interaction points.

�  Even for quorums, because order of updates is nondeterministic

�  Consensus (e.g., Paxos or Raft): Does have an interaction point

�  Consensus is interesting, because agreement is a form of determinism

�  However, there is still nondeterminism in the choice of accepted proposal

�  Nondeterminism seems to be inherent when the consensus algorithm is
running with partial synchrony (like the Internet). I have no proof, though.

�  Causality: Concurrent events are often interaction points; ordered events not

�  Synchrony model:

�  Partial synchrony or asynchrony: algorithms may have interaction points

�  Full synchrony: interaction points can easily be avoided

How to design with
interaction points

Approach
�  We want to design distributed systems with interaction points, so

that we can add them only where needed and nowhere else
�  No existing languages let you do this (as far as I know)

�  Let us define a simple “design language” that does exactly this

�  This is the right way, because (1) it will be easy to think about
designs in this language, and (2) the designs map easily to your
favorite real language

�  So we’re golden: we have the right tool and it’s future-proof

�  But what if you’re stuck with really bad legacy languages?
�  Like Java and similar crud

�  Use the design language and translate to the legacy language

�  Add layers to clean up the legacy language

Functions
and interaction points

�  We define the design language in two steps:
1  Distributed functional concurrency (pure)

2  Multi-agent concurrency (adds interaction points)

�  Everything we learn from the design language maps
directly to real languages
�  Don’t be fooled by complicated real languages: they

add lots of bells & whistles to make coding easier,
but they still do basically the same things as our
design language

First step:
functional concurrency

�  In the first step we define a simple language to
write purely functional distributed programs

�  We do it from the ground up, based on λ calculus
�  We then give it a more convenient syntax
�  You can translate this into your favorite language

�  In the second step, we add interaction points
�  This will be our design language

�  Write mostly functional, add a few interaction points

Lambda (λ) calculus
�  Lambda calculus is the core of functional programming

�  We define it first and then we show functional concurrency

�  Syntax
�  x ::= (variables)

�  t ::= x | (λx. t) | (t1 t2)

�  Semantics (using substitution operation t[x])
�  (λx. t[x]) → (λy. t[y]) α-conversion

�  ((λx. t1) t2) → t1[x:=t2] β-reduction

�  ((λx. (t x)) → t (if x not free in t) η-conversion

Properties of λ calculus
�  Data types and control structures

�  Data types (lists, numbers, etc.) and control structures (if, case,
etc.) can be added to the λ calculus without changing anything
essential

�  Confluence
�  Church-Rosser theorem: Final result of a reduction is the same

for all reduction orders (up to variable renaming)
�  This holds for many variants of the λ calculus

�  Functional concurrency: a more convenient syntax
�  λ calculus can express networks of concurrent agents. Each agent

has its own state and sends and receives messages from
neighboring agents.

�  It’s only syntax; it keeps all the good properties of the λ calculus

Functional concurrency
�  Define agents, streams, and threads:

�  Agent = tail-recursive function
executing in its own thread

�  Stream = list read by one agent
and created by another agent

�  Thread = a restriction on which
reductions we are interested in

fun prod(n)
 delay(1000)
 n|prod(n-1)
end

fun map(s, f)
 case s of h|t then
 f(h)|map(t, f)
 [] nil then
 nil
 end
end

fun sum(s, a)
 case s of h|t then
 h+a|sum(t,h+a)
 [] nil then
 nil
 end
end

local s1 s2 s3 in
 thread s1=prod(1) end
 thread s2=map(s1,fun (x) x*x end) end
 thread s3=sum(s2,0) end
end

prod map sum
s1 s2 s3

Distributed λ calculus
�  We can easily make functional concurrency distributed

�  Consider a set of nodes N with a, b, c, … ∈ N

�  Localize each term on a node
�  x ::= (variables)
�  ta ::= xa | (λx. tb)a | (tb

1 tc
2)a

�  Terms can reference subterms on other nodes

�  Extend the reduction rules to execute on single nodes
�  (λx. ta[x])a → (λy. ta[y])a α-conversion
�  ((λx.ta

1)a ta
2)a → ta

1[x:=ta
2] β-reduction

�  ((λx. (ta xa)a)a → ta (if x not free in ta) η-conversion
�  ta → tb µ-conversion (mobility)

Distributed
functional concurrency

�  We put each agent on a node

�  This gives a deterministic
distributed program: an agent
always knows from where the
next input will come

fun prod(n)
 delay(1000)
 n|prod(n-1)
end

fun map(s, f)
 case s of h|t then
 f(h)|map(t, f)
 [] nil then
 nil
 end
end

fun sum(s, a)
 case s of h|t then
 h+a|sum(t,h+a)
 [] nil then
 nil
 end
end

local s1 s2 s3 in
 node s1=prod(1) end
 node s2=map(s1,fun (x) x*x end) end
 node s3=sum(s2,0) end
end

prod map sum

node n1 node n2 node n3

s1 s2 s3

Second step:
interaction points

�  We add interaction points to our design language

�  We again start with the λ calculus
�  We add new terms and rules for interaction points

�  We again define a more convenient syntax
�  We extend distributed functional concurrency with

interaction points
�  This gives multi-agent concurrency

�  We show how to solve the client/server example
�  We need only one interaction point in the whole system

Read-write
distributed λ calculus

�  We add read and write operations to the distributed λ calculus
�  Result depends on reduction order and timing, so they are interaction points

�  If the read returns the result of the most recent write, then it’s mutable state

�  But write and read can also behave like send and receive

�  Add read and write terms
�  x ::= (variables)

�  ta ::= xa | (λx. tb)a | (tb
1 tc

2)a | (σ.tb)a | (ρx. tb)a

�  Add two reduction rules
�  (λx. ta[x]) → (λy. ta[y]) α-conversion

�  ((λx.ta
1) ta

2)a → ta
1[x:=ta

2] β-reduction

�  ((λx. (ta x))a → ta (if x not free in ta) η-conversion

�  ta → tb µ-conversion (mobility)

�  (σ.ta)a → ta σ-reduction (write, i.e., send)

�  (ρx.ta
1)a → ta

1[x:=ta
2] ρ-reduction (read, i.e., receive)

Multi-agent concurrency
�  We invent a convenient syntax for the read-write λ calculus

�  We start with functional concurrency (agents, streams, threads)
�  We add interaction points in a nice way

�  Inspired by the client/server example, we add named streams
�  Sending a value to the name will add it to the stream; reading the

stream will read the value

�  p=newport(s) /* Create a name p for stream s */
send(p, x) /* Add x to the end of the stream named by p */

�  This gives multi-agent concurrency
�  Most of the program is functional, with a few interaction points

�  The best paradigm for writing concurrent and distributed programs!
�  Client/server is easy to write with multi-agent concurrency…

Client/server redux
�  Now we can define a client/server
�  fc and fs are pure functions
�  There is just one interaction point

Server

Client 1

Client 2 Port p is the
interaction point

local s p in
 node p=newport(s) server(state,s) end
 node client(state1,p) end
 node client(state2,p) end
 … /* as many clients as we need */
end

fun client(state,p)
 send(query(state),p)
 client(fc(state),p)
end

fun server(state,s)
 case s of q|t then
 server(fs(q,state),t)
 [] nil then
 nil
 end
end

One interaction point

Now we can design!
�  Now we can design distributed systems that manage all

their interactions with the real world

�  We write most of the program in functional concurrency

�  By definition, this has zero interaction points

�  We then add interaction points as needed

�  Only when we need to interact with the real world

�  The full program uses multi-agent concurrency

�  As few as possible

�  Interaction points add messiness!

Case study:
Eventual consistency

Eventual consistency
�  Commonly done for performance

�  Requests can be initiated
concurrently; multiple requests can be
“in flight” simultaneously; replies are
returned as quickly as possible

�  Writes are eventually propagated to all
replicas; reads are eventually handled
by at least one replica

�  Consider a replicated database
�  A write is done and immediately

followed by a read (without waiting for
the write to finish)

�  Does the read see the write?
�  Sometimes yes, sometimes no!

�  How should we think about this?
�  Focus on the interaction points!

Can we get rid of them?

Replica 1

Replica 2

Replica 3

Write

Read

Removing interaction points
�  Improve the design by removing interaction points

�  For eventual consistency there are several ways
�  Use strong consistency (quorums). This fixes part of the

problem, but successive operations are still
nondeterministic. We can improve it by adding causal
order to the system, it’s not that simple.

�  Use convergent consistency (Conflict-free Replicated Data
Types – CRDTs). Make sure updates never lose information
(use monotonic writes instead of arbitrary writes).

�  Convergent consistency (e.g., Antidote or SwiftCloud):
�  Reads observe previous writes
�  Successive reads observe increasing set of writes
�  Writes applied after observed reads

Convergent consistency
�  We should make this precise (ambiguity is the bane of distribution!)

�  We use events e on objects k with visibility between events e1≺vise2
(see “Principles of Eventual Consistency” by Sebastian Burckhardt)

�  Eventual consistency
�  An operation is intermittent before becoming permanent

�  “All an object’s events are seen by all other events on that object, except for a
finite number”

�  For all objects k: ∀e∈Ek. {e’∈Ek | e⊀vise’} is finite
where Ek is the set of k’s events

�  Convergent consistency
�  An operation once done is seen forever

�  “Event e of object k1 once visible to k2 is always visible to k2”

�  ∀e∈Ek1 ,∀e’,e’’∈Ek2 : e≺vise’∧e’≺vise’’ ⇒ e≺vise’’

Highly recommended!
Free pdf!

Conclusion

Conclusion
�  Programming requires real-world interaction

�  This is why programming is like poker, not like chess

�  For distributed programming especially, time and order of events is crucial

�  Functional programming is the best paradigm for writing programs
�  But it does not support real-world interaction

�  Imperative programming does, but drops most of the advantages

�  The solution is to use both in the right way
�  Use functional programming by default

�  Add interaction points for real-world interaction

�  Use a design language that lets you identify the interaction points

�  This is work in progress: we are still formalizing and elaborating it

�  Exercise for you: define the design language as an Erlang variant!
�  Right now, each Erlang process is an interaction point, which is the wrong

default; the variant needs to switch this default

Extra information

A functional
programming view

�  Another way that pure functions make code easier to reason about
won’t be apparent when you’re first getting started. It turns out that
what really happens in FP applications is that (a) you write as much
of the code as you can in a functional style, and then (b) you have
other functions that reach out and interact with files, databases,
web services, UIs, and so on — everything in the outside world.

�  The concept is that you have a “Pure Function” core, surrounded by
impure functions that interact with the outside world:

�  Given this design, a great thing about Haskell in particular is that it
provides a clean separation between pure and impure functions —
so clean that you can tell by looking at a function’s signature
whether it is pure or impure.

Excerpt from Benefits of
Functional Programming,
chapter of Functional
Programming, Simplified,
by Alvin Alexander, 2019

The rationale is good, but
unfortunately Haskell is not a
good starting point, for four
reasons: (1) eager should be
the default instead of lazy
(nonstrict), (2) it does not
have functional concurrency,
(3) it is not distributed, and
(4) you often want to hide an
impure implementation so it
looks pure from the outside

Foundation of Gnosticism

The pleroma is not a space in the usual sense and does
not have time; it is not based on metric time or space as
we know them. It is the space of all possible concepts,
infinitely denser and more intricate than the observable
universe we know. Concepts are connected in infinite
ways to an infinity of other concepts and are nested
both towards the small and the large. Consciousness in
the pleroma surveys concepts like scintillating rays of
sunlight touching objects in a big dark room full of stuff.
What is in the mind is what the light illuminates. The
roaming of a person’s thought processes is a faint echo
of this.

Functional programming is analogous: an expression is
reduced step by step. The expression being reduced is
the illuminated part. All earlier and later expressions in
the reduction also exist and are true (because
expressions remain true forever), but they are not seen
in the current reduction step. Time is defined as the
order of the reduction sequence, but this order is just
one among many possible orders of expressions. The
Church-Rosser theorem states that no matter what
choices are made to move the illuminated part, it ends
up in the same place. Church-Rosser states that there is
no free will in the execution of a functional program.

The kenoma is a small piece of the pleroma, with
concepts connected according to rules set up by a
minor divinity called the demiurge, and that we call
the “laws of physics”. The rays of light are forced
to stay on a line, the line of time. This gives us the
illusion of time and change, but in fact it is just a
play between the concepts of time and change,
acting on the concepts in the observable universe.
Time is a concept of sequencing, that connects
related objects using a relationship called the
change concept. This is all that the demiurge can
do, letting us participate in this game of an
evolving world. The demiurge is like a child playing
with blocks in the corner and we are part of this
world of blocks. But our thought may sometimes
touch the world of ideal forms, so maybe we have
the potential to leave the kenoma.

Pleroma (“fullness”)
The world of ideal forms or

concepts, it is the only reality

Kenoma (“emptiness”)
The observable universe, it may

be the limit of our consciousness

