
Monkey, Take the Wheel

The cognitive complexity of your projects

Your Speaker

Dmytro Lytovchenko

Sr. Developer and Technical Lead @ Erlang Solutions, Sweden

25 years XP of looking busy at the keyboard

@kvakvs

You may have seen my
● BEAM Wisdoms website
● BEAM VM experiment in Rust

As a developer I’d like to...

● Have less friction while
developing, reading, trying to
memorize or understand the code

● Do less thinking while maintaining
the high quality of my work

● Trivialize some larger code
changes

Motivation

To give understanding

● why various “best practices” exist

● what they give you as a developer.

Of Human Brain

“Thinking Fast and Slow”
The human brain has two
modes of operation

System 1

System 2

System 1

Fast, automatic, frequent, emotional, stereotypic, unconscious.

● Native language

● Muscle memory: walking, cycling, etc

● Memorized reactions and answers

● Quick judgements

System 1 (dev)

● Relaxed coding, easy algorithms

● Following checklists with simple steps

● Able to understand simple constructs and ideas

System 2

Slow, effortful, infrequent, logical, calculating,
conscious.

● Computations, judgements

● Careful operations, comparisons

● Planning

● Precision work (parking)

System 2 (dev)

● Smart, knowledgeable

● Planning & Design

● Learning new code and concepts

● Code reviews

● Investigations

Tim Urban

“Why Procrastinators Procrastinate” (2013)

An article at waitbutwhy.com

TED talk, Feb 2016

Not Sustainable

Organize Your Work (1)

Use System 2 (the smart thinker) for:

● Planning your day

● Designing

● Investigating problems

● Reviewing code

Organize Your Work (2)

Use System 1 (the monkey) for:

● Following the plans

● Creating simple code

● Modifying code and experimenting

Of Code

Genesis

All code is created equally perfect good.

Until the requirements change.

Least Surprise Principle

● Make your project do the expected thing

● Store your code at the expected locations

Tested on primates

Animal-safe and friendly

Assumptions About the Future Developer

● Assume the user has an editor with

○ Code navigation

○ Search

● Assume the user will be happy to

○ run your checks and tests (make sure they know how)

New in the Project

● A lot to learn

● Assume the user has no clue how to

○ Get dependencies

○ Build, test, run

○ Prerequisites: Special directories, files, databases,
networks which must exist...

Consider a Better Build System

● Clean build system is important, but hard to do

○ Gather requirements

○ Evolution over revolution

○ Reduce the scope

File & Module Structuring

● Smaller modules

○ Split and regroup your code

○ Module name helps grouping the code

● Elixir: Namespaces are great, use them!

misc_util

Naming Language

● Flow like natural language

○ Functions: start with a verb

○ Predicate functions and boolean variables start with a question:

■ Is? Can? Does? Whether?…

○ Structs/records: form a noun

Visual Structuring (1)

● Why?

○ Ability to clearly see the code structure

○ Reduce visual complexity

○ Shorter time to understand

Visual Structuring (2)

● Aligning assignments

● Aligning struct fields

● Aligning data

nil = List.last([])
lower..upper = 1..10

nil = List.last([])
lower..upper = 1..10

Visual Structuring (3)

● Short concise functions with comment

○ What it does, why?

○ How to use?

%% @doc Spawn a grumble and store

%% into a flexible box

grumble(X) -> box:store(spawn(X)).

Visual Structuring (4)

● Documentation too far from code = obsolete

%% See README.md at

%% PROJ/apps/app1337/docs/user/old/new/update/v1/2016

Visual Structuring (5)

● Refer to other functions and modules in comments to add context

○ Makes sense only if referenced once

%% @doc Used only from cat_app.erl

cat(blep) -> mlem.

Cyclomatic complexity

● Code metric

● Number of linearly independent code paths

The metric was developed by Thomas J. McCabe, Sr. in 1976.

Reduce code nesting where you can

Break out simpler functions

Predictable code behaviour

● It does what I think it should do

● Surprises can cost days or weeks of developer time

Predictable Code Placement

● Predictable and consistent naming

● Place things in your code, where they will be found

● Related functions, types, structs together

● Definitions on top

Expected =:= Actual

● Subdirectories and apps, don’t be afraid to move

● Clean and visual boot up sequence for your system

● Remember this code will be read later, by you also

Your Tools

Compile time checks

● Static typing (records, structs)

● Strongly keyed structures, ideally also typed

● Prefer named constants over literals

my_long_special_vaue

vs.

?MY_LONG_SPECIAL_VALUE

:my_long_special_vaue

vs.

const my_long_value, do: …
defmacro my_long_value…

Functions with Many Args

● Erlang maps and records

● Elixir records and keywords

myfunc(A, B, Time, Count, State, Status,
Value1, Value2, KeyFrom, KeyTo, Sort, Reverse) ->

Vs.
myfunc(#{a => A, b => B, time => Time, count => Count, …)

Elixir:
def myfunc(a: a, b: b, time: time, count: count, …)

Strong typing

● Elixir has structs

○ #Rabbit{legs: 4}

● Erlang has records

○ #rabbit{legs = 4}

● Tagged tuples

○ {rabbit, 4}

Compile-Time Checks

● Matching data on an expected format
○ as close to static typing as you can get

fahrenheit({celsius, C}) -> … ;
fahrenheit({fahrenheit, F}) -> F;
fahrenheit(Otherwise) ->
 erlang:error({badarg, ?MODULE, ?FUNCTION_NAME}).

def fahrenheit(#Temp{t: :celsius, v: c}), do: …
def fahrenheit(#Temp{t: :fahrenheit, v: f}), do: f
def fahrenheit(other), do: raise RuntimeError

Be loud about
bad argument

calls!

Static Checking Tools

● Type specs (Dialyzer)

● Static analysis (inaka/elvis)

○ Code smells

○ Code style checks, formatting

■ erl_tidy, erl_prettypr

■ mix format

Runtime checks

● Function guards: Allow enforcing some incoming data types on
arguments.

● Safety check macros

○ Make your debug builds more vocal about suspicious things

● Assertions

Mark Your Errors

● Explicit is better than implicit

● Stacktrace sometimes is not available or off by miles!

● Mark where your errors originate from

○ badarg
vs
{error, {badarg, ?MODULE, ?FUNCTION_NAME}}

Mark Your Logs

● Always log location where the error was created

● Precise time helps

○ Can match multiple logs

Mark Your Data

● Mark where your data originates from

● Named and explicit is better than implicit

○ {tcp, []}
vs
#transport{type = tcp,
 buffer = [],
 created_at = {mymodule, myfunction}}

Hard to Leave Unfinished

● When doing a large scale change, leave traces everywhere

○ Logs

○ Artificial compile or runtime errors

○ Easy to find comments, e.g.:

■ Use UNFINISHED or TODO in comments

■ Teach your CI or local git hook to fail at “UNFINISHED” or “TODO”

Your Workflow

Choosing the Workflow

Alternating between System 2 and System 1

● Plan your day

● Follow the checklist

● Rest

Choosing the Workflow (2)

● Simple is better

● Shorter is better

● Document the intent

● Prefer automatic checking

Choosing the Workflow (3)

● Minimize distractions and unnecessary manual actions

● Perfectly one click flow

○ “build”, “build+test”, “build+test+release” etc

Thank you!

Dmytro Lytovchenko
@kvakvs

