
www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

ErlangRT
A new BEAM virtual machine in Rust

Dmytro Lytovchenko

Sr Developer @ Erlang Solutions, Sweden

@kvakvs



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

About Me

Was born in Ukraine

A cat person

Senior Developer in Erlang Solutions Sweden

Almost 9 years of Erlang & backend experience

20 years of C and C++ experience

Some game development background, Python, some 
Ruby, and some old PHP experience

��



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

On Being a 
Human...



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Daniel Kahneman psychologist and 
economist (Nobel prize: Economics, 2002)
His book (2011) became a best seller

On Being a Human

Human mind runs 2 systems:

▸ 1 — Automatic, provides solutions
▹ Quick ideas without actual 

evaluation
▸ 2 — Slow, expensive, clumsy, smart

▹ Evaluates, can change or accept 
the solution



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

The Monkey: Fast, automatic, frequent, 
emotional, stereotypic, unconscious

▸ Quick comparisons

▸ Accessing short term memory

▸ Emotional reactions, disgust, anger etc
▹ A typical social app user scrolling

▸ Familiar activities: walking, cycling, driving with no traffic

▸ Understanding simple sentences



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

The Thinker: Slow, effortful, infrequent, logical, 
calculating, conscious

▸ Planning your schedule or your actions

▸ Focusing on something in a noisy env, on a 
party

▸ Remembering/recognising a sound

▸ Finding objects/persons with some property

▸ Tight parking

▸ Slow-paced games vs hard opponents

▸ Calculating numbers or logical reasoning

“Sponge Bob Square Pants” animated series, created 
by UPP/Nickelodeon, distributed by Viacom



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

On Procrastination

An article at waitbutwhy.com from 2013
“Why procrastinators procrastinate”
▸ Instant gratification Monkey

▸ Panic deadline Monster which scares the Monkey 
away



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Having More Work Done

An obvious question: How to do more things before getting tired?

The answer: Allow the Monkey to drive more.

▸ Remove the Monkey food (distractions, social feeds, noise etc)

▸ Plan your actions in Thinking mode, create checklists with 
steps to perform, then let the Monkey execute

▸ Allow yourself some controlled rest

▸ Allow the Monkey to do mistakes and reveal them to be fixed



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Monkey-Friendly Code

▸ A checklist is planned ahead

▸ Let the Machine do the thinking

▸ Let the Machine do the remembering

▸ Let the Machine find the stuff you’ve missed

▸ Let the Monkey drive the Machine

The Solution iswell known



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Animal-Friendly 
Coding



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

C is Not Animal-Friendly

Working with erlang/otp (C code) requires a lot of focus:

▸ Everything is either an integer, a pointer or a struct
▸ Byte sizes, word sizes, bit sizes are all integers

▹ Sometimes signed
▸ Requires locking, often in certain order
▸ Pre-required knowledge (e.g. construction/call order)
▸ Naming styles are inconsistent (more remembering)



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

C is Not Animal-Friendly

▸ Time is spent making sure that your program is correct

▸ This distracts us from the actual problem we’re solving

C++ isn’t friendly either



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Notable Evolutional Steps of Erlang/OTP

▸ The new competitor projects are doomed to repeat the 
history, same evolution steps have to be taken:
▹ Single CPU → SMP
▹ Choice of GC algorithm
▹ Evolution of the BEAM loader and the interpreter loop

▸ We know the winning strategy

▸ Possible evolution path: Oxidize the OTP C source?



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Why People Choose C?

▸ Multiple freedoms

▸ Unsafety is welcome

▸ “I know what I am doing”
▸ C runs everywhere

▸ C is plain simple



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Why Not Join Writing the VM in C?

▸ Limitations (or lack thereof) and unsafety of C

▸ OTP source is C98 (is there an upgrade plan?)

▸ OTP source is weakly typed, a lot of conventions you have to 
remember

▸ Convoluted build system

▸ Resistance to major changes (understandable)
▹ Ericsson’s customers want their code to keep working

▸ Minor changes take a lot of effort



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Why a VM rewrite?

▸ Discover and publish the missing arcane 
knowledge about the VM

▸ Serious challenge, but doable

▸ Get rid of ancient code, new algorithms, cleanup

▸ Fun

http://beam-wisdoms.clau.se/

github.com/happi/theBeamBook

http://beam-wisdoms.clau.se/en/latest/
https://github.com/happi/theBeamBook


www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Enter ErlangRT



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

History of ErlangRT

▸ 2015 — kvakvs/GluonVM in C++ (now abandoned)

▸ kvakvs/E4VM — a prototype for embedded which used Forth E4 
VM as inspiration but the goal was to run the BEAM

▸ Multiple approaches to translate BEAM into simpler bytecode
▹ A translator in Haskell producing compressed bitcode

▸ September 2017 — ErlangRT was started in Rust



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Competitor projects

▸ cloudozer/ling
▹ Written in C, last commit 4 years ago
▹ The selling point was low cost of starting new VMs on the 

hypervisor

▸ bettio/AtomVM
▹ Embedded-oriented VM written in C
▹ Finally a practical man doing The Real Thing (unlike my 

previous approaches)

▸ archSeer/enigma
▹ A direct competitor project, in Rust, started in Dec 2018



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Rust is Awesome

▸ Hindley-Milner type system, pattern matching
▹ Type inference

▸ Superior error handling
▹ Runtime errors are a pleasure to read

▸ Minimises the time spent in gdb/gede

▸ Minimise copy & paste: powerful yet sane macros



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Why a VM in Rust?

▸ Zero-cost abstractions

▸ Safety is the default
▹ Range checking, thread data-sharing rules, etc
▹ Unsafety is explicit

▸ Strong H-M typing:
▹ Easy refactoring
▹ Everything can have its own type

▸ Fast as C, portable
▹ (Downside) No “goto *label” statement



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

“How hard could it be?”

1. Decode a BEAM file
2. Implement a few data types
3. A dumb heap with a stack
4. Interpret a few opcodes

…
Is this enough?

▸ For a prototype maybe, yes



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

A Fractal of Complexity

Binary Building

▸ Opcodes for building a binary
▹ Insert binary, bitstring, integer, float

▹ Process-level context (current binary)
▹ Insert from 0th bit, from uneven bit position, into 0th 

bit, into uneven position
● Fits into a single byte?
● Big/little endian? Negative?
● Does arch support byte addressing?

○ Are source and destination word aligned?



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

A Fractal of Complexity

Does your VM support binaries?

▸ Hmm, it might need…
▹ Binary term type, binary on bin heap, binary on 

process heap, refcounted binary, type test op, binary 
reading ops, binary building ops, binary matching 
and decomposing ops (big and little endian, signed 
and unsigned, byte alignment, remember?), search 
& matching (Aho-Corasick or similar), binary_to_X 
conversions, X_to_binary conversions, GC support 
for binaries, binary copy, iolist support… and more



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

ErlangRT: Goals and Expectations

▸ Run most of the existing code (no NIF)

▸ Support at least Linux x64, but minimise usage of std

▸ Support most important VM features

▸ Have a decent GC algorithm

▸ Use erlang/otp test suites for testing



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Progress

● Term data type 80% (remaining 80% are in progress)

● External Term Format — decoder 80%, no encoder

● BEAM Loader — usable

● VM and processes — 40%

● VM loop and opcodes — 45% (74 of 168)

● Some basic BIFs — <15%

● Binaries, sub-binaries, binary heap, binary opcodes — 40%

● GC — started work

● ETS, sockets, ports — not started



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

ETS Ports

Floating 
Point

Opcodes

Native Functions (BIF)

Scheduler; 
Processes

VM Loop; 
Runtime Context

GC

On-heap Representation

Term data types

Integer Math BigintBinary

Heap and Stack

Files, 
Network

Progress DistributionCommon Test ct_run

TTY

Crypto



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Screenshots



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Screenshots



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

ErlangRT: Plans for 2019-2020

▸ GC

▸ Run the init and enter the shell
▹ Ports/TTY
▹ File API

▸ Common test via ct_run



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Contributions

▸ Rust favours large refactoring
therefore...
▹ The codebase is in constant churn

▹ Read some code
▹ Join, if you feel brave enough

▸ Small contributions are the best



www.erlang-solutions.com
© 1999-2019 Erlang Solutions Ltd

Thank you

github.com/kvakvs/ErlangRT

More knowledge:

http://beam-wisdoms.clau.se/

github.com/happi/theBeamBook

@kvakvs

https://github.com/kvakvs/ErlangRT
http://beam-wisdoms.clau.se/en/latest/
https://github.com/happi/theBeamBook

