
Thomas Césaré-Herriau & Vamsi Chitters

Observing Elixir Microservices

#CodeBEAMSF

Table of Contents

2

1. What is Brex?
2. Observability in Theory
3. Observability in Practice
4. SLI/SLOs
5. Lessons We Learned

What is Brex?
3

#CodeBEAMSF

What is Brex?

4

#CodeBEAMSF

What is Brex?

5

Brex is rebuilding B2B financial products

Financial Operating System

Card Cash

#CodeBEAMSF

What is Brex?

6

• 4 offices (NY, SF, YVR, SLC)
• 10 engineering teams
• 90% of backend codebase in Elixir
• More than 30 microservices

#CodeBEAMSF

30 microservices?

7

#CodeBEAMSF

Deployment A

IsoAuthServer

Enables services to be developed, deployed and
scaled independently

8

IsoAuthServerIsoAuthServerService A

Database
1

IsoAuthServerService B

Database
2

Deployment B

Database
2

#CodeBEAMSF

Product / Language / Regulation
agnostic Platform

Platform approach to building our systems

9

IsoAuthServerIsoAuthServerOnboarding
Service

Card Application
Validation Service

Cash Application
Validation Service

Onboarding UI
Engine

Card
Onboarding UI

Cash
Onboarding UI

#CodeBEAMSF

Isolate products (Cash vs Card)

10

Cash k8s cluster Card k8s cluster

IsoAuthServerIsoAuthServerCash Service A

IsoAuthServerIsoAuthServerCash Service B

IsoAuthServerIsoAuthServerCard Service A

IsoAuthServerIsoAuthServerCard Service B

#CodeBEAMSF

Microservices at Brex

11

• Enables services to be developed, deployed and
scaled independently

• Platform approach to building our systems
• Isolate products (Cash vs Card)

#CodeBEAMSF

• gRPC: synchronous RPC calls between Brex
Services

• Events Infrastructure (Kafka): asynchronous
communication

Brex Communication Infrastructure

Observability In Theory
13

#CodeBEAMSF
14

Why observability? And why not monitoring?

#CodeBEAMSF

Traditional Monitoring

#CodeBEAMSF

Traditional Monitoring

 UI

Data

Access
Layer

Business
Logic

Monolithic Services

#CodeBEAMSF

Traditional Monitoring

 UI

Data

Access
Layer

Business
Logic

Monolithic Services

Developers building software while
Ops/SRE implement monitoring

#CodeBEAMSF

Limitations of traditional monitoring

18

• Mostly focused on known failures
• Historically not designed for distributed

systems
• Traditionally implemented after a system is

built

#CodeBEAMSF

Last but not least, rhymes with...

19

#CodeBEAMSF

“Observability is a measure of how well internal
states of a system can be inferred from
knowledge of its external outputs”

Observability

#CodeBEAMSF

• Understand quickly new, unpredicted failures
• Principle of designing observable services
• A cloud native approach

Observability

#CodeBEAMSF

Observability: a cloud native approach

• Containerized
• Dynamically orchestrated
• Microservices-oriented

#CodeBEAMSF

Observability: so much better

Observability In Practice
24

#CodeBEAMSF

Case Study: Authorization flow

25

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Question 1

#CodeBEAMSF

Why are authorizations timing out?

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

gRPCTCP

• Credit card network notifying our systems of
requests taking more than 2s

• Multiple services in the path of an
authorization: which one is the bottleneck?

#CodeBEAMSF

Solution: Distributed tracing

Question: Why are
authorizations timing out?

Trace

Spans

#CodeBEAMSF

• spandex library: Tracer API for Elixir with
pluggable backend

○ Supports Datadog as backend (through the Agent)

○ Comes with built-in Plug adapters

• Interceptor pattern to serialize and deserialize
tracing context in gRPC headers

Solution: Distributed tracing

Question: Why are
authorizations timing out?

#CodeBEAMSF

Spandex Components

Datadog
Agent

Spandex

Key Value

-- --

Spandex.Strategy: Pdict

Spandex Backend

#CodeBEAMSF

Spandex (default Pdict strategy) Example

{:ok, _} = Tracer.start_trace("123", “network”) Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}

where Network.Tracer is an example
trace_key

%Spandex.Trace{bag
gage: [], id: 707096,
priority: 1, spans: [],
stack: []}

#CodeBEAMSF

Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")
Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}

where Network.Tracer is an example
trace_key

%Spandex.Trace{bag
gage: [], id: 707096,
priority: 1, spans: [],
stack:
[%Spandex.Span{id:
744186, name: "123",
trace_id: 707096,
...}]}

#CodeBEAMSF

Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")

TestTracer.finish_span()

Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}

where Network.Tracer is an example
trace_key

%Spandex.Trace{bag
gage: [], id: 707096,
priority: 1, spans:
[%Spandex.Span{id:
875246, parent_id:
744186, trace_id:
707096, ...}], stack:
[...]}

#CodeBEAMSF

Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")

TestTracer.finish_span()

TestTracer.finish_trace()

Datadog
AgentSpandex

Key Value

send to Datadog...

#CodeBEAMSF

Quick note on consistent service name

#CodeBEAMSF

Plug / Interceptor pattern

Request

Client
Interceptor
adds
tracing_ctx
to header

Server
Interceptor
retrieves
tracing_ctx
from header

GRPC

%{
 span_id: …,
 priority_id: …,
 trace_id: …,
 …
}

%{
 span_id: …,
 priority_id: …,
 trace_id: …,
 …
}

#CodeBEAMSF

Plug / Interceptor pattern

Request

Client
Interceptor
adds
tracing_ctx
to header

Server
Interceptor
retrieves
tracing_ctx
from header

GRPC

%{
 span_id: …,
 priority_id: …,
 trace_id: …,
 …
}

%{
 span_id: …,
 priority_id: …,
 trace_id: …,
 …
}

Tracing context
recovered!

#CodeBEAMSF

• We mapped lost spans to operations executed
within a spawned process

○ Tracing context is not propagated

• spandex Tracing library stores the tracing
context in the pdict

○ pdict is tied to a process

Problem: some traces are losing spans

#CodeBEAMSF

• A caller-aware context
• When get/set and not yet initialized, looks up

the chain of callers
○ Process.get(“$callers”) available since Elixir v1.8

• And stores a parent context into its own pdict

Solution: Brex.Context

Problem: Some traces are
losing some spans.

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

Process.info(pid, :dictionary) → %{
:brex_context => %Brex.Context{
 identity_context: …
 customer_identity_context: …
 trace_id: …
 span_id: …
 priority: ...
}

}

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)

PID: 456

Brex.Context.get_trace_id()

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child) X

PID: 456

Brex.Context.get_trace_id()

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)

PID: 456

Brex.Context.get_trace_id()

iex(1)> Process.get(“$callers”)

[#PID<123>]

#CodeBEAMSF

How does Brex.Context work?

Problem: Some traces are
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child) %Brex.Context{...trace_id: 1}

PID: 456

Brex.Context.get_trace_id()

> 1

We fixed the bottleneck!

Question 2

#CodeBEAMSF

• Some customers reported not receiving text
message after a successful transaction

• Turned out some services would crash for
different reasons

Background

#CodeBEAMSF

How do we ensure our team is notified when this
happens?

#CodeBEAMSF

Question: How do we ensure our team
is notified when this happens?

• We rolled out Sentry everywhere
• Super easy:

○ Logger.add_backend(Sentry.LoggerBackend)

Solution: Alerts on all exceptions/errors

#CodeBEAMSF

Question: How do we ensure our team
is notified when this happens?

Done! Our microservices architecture is fully
monitored!

Sentry everywhere

#CodeBEAMSF

#CodeBEAMSF

#CodeBEAMSF

#CodeBEAMSF

• Every single crash/exception was reported
• Conflicts with “Let it crash” Erlang philosophy
• Many exceptions would recover through the

Supervision tree

Problem: Alert fatigue and false positives

#CodeBEAMSF

Supervisor

GenServer GenServer

Application

 Core Logic

#CodeBEAMSF

Supervisor

GenServer GenServer

Application

 Core Logic

Shutdown

#CodeBEAMSF

Supervisor

GenServer GenServer

Application

 Core Logic

No user-visible
impact!

Restart

#CodeBEAMSF

• Symptom vs Cause

• Track user-visible impact

Solution: Symptom Based Alerts

Problem: Alert fatigue and
false positives

#CodeBEAMSF

• Symptom vs Cause

• How do we track user-visible impact?

Solution: Symptom Based Alerts

Problem: Alert fatigue and
false positives

SLI/SLO/SLAs
61

#CodeBEAMSF

SLIs & SLOs

#CodeBEAMSF

“a carefully defined quantitative
measure of some aspect of the level

of service that is provided”
- SRE Bible (Google SRE Handbook)

Introduction of SLIs/SLO/As

SLI

#CodeBEAMSF

Introduction of SLIs/SLO/As

SLI

#CodeBEAMSF

A reasonable % of your SLI

Introduction of SLIs/SLO/As

SLO

SLI

#CodeBEAMSF

Introduction of SLIs/SLO/As

Threshold

SLO

SLI

#CodeBEAMSF

Contract between Service Provider and User

Introduction of SLIs/SLO/As

SLA

SLO

SLI

Threshold

#CodeBEAMSF

#CodeBEAMSF

• Request Latency
• System Throughput
• Error Rate
• Availability

Service Level Indicator

#CodeBEAMSF

• Request Latency
• System Throughput
• Error Rate
• Availability

Service Level Indicator

#CodeBEAMSF

What does Availability mean for a service?

Service Level Indicator

#CodeBEAMSF

Service’s readiness endpoint /ready returns 200

Service Level Indicator: Availability

#CodeBEAMSF

• Service is up, but can’t connect to downstream
services

Service Level Indicator: Availability

#CodeBEAMSF

• Service is up, but can’t connect to downstream
services

• Service is up, but is unreachable from external
clients

• ...

Service Level Indicator: Availability

#CodeBEAMSF

This indicator is this dog:

#CodeBEAMSF

What is a good indicator?

Service Level Indicator: Availability

#CodeBEAMSF

• A good SLI measures User Journey
○ A user can be a person, another service, a robot…

Service Level Indicator

#CodeBEAMSF

We have 2s to reply to an authorization request
performed by the Processor

SLI Use case 1: Card Swipe

#CodeBEAMSF

Good SLI: Requests to our service /auth
endpoint returns a valid response
(approved/declined) within 2s

SLI Use case 1: Card Swipe

#CodeBEAMSF

How to measure it?

#CodeBEAMSF

SLI: Requests to our service /auth endpoint returns a valid
response (approved/declined) within 2s

81

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?

#CodeBEAMSF

SLI: Requests to our service /auth endpoint returns a valid
response (approved/declined) within 2s

82

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?

#CodeBEAMSF

SLI: Requests to our service /auth endpoint returns a valid
response (approved/declined) within 2s

83

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?

#CodeBEAMSF

SLI: Requests to our service /auth endpoint returns a valid
response (approved/declined) within 2s

84

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?

#CodeBEAMSF

#CodeBEAMSF

Service Level Indicator

All options are valid and can be measured

#CodeBEAMSF

Service Level Indicator

Sometimes, only a proxy is available

#CodeBEAMSF

Service Level Indicator

The best is the closest to the user experience

#CodeBEAMSF

This one

89

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here

#CodeBEAMSF

It is hard to define and measure

Service Level Indicator

#CodeBEAMSF

Service Level Indicator - Use Case 2

#CodeBEAMSF

SLI Use Case 2: SMS notification to users

For a good user experience, users must receive
their transaction SMS at most 5 minutes after the

transaction took place

#CodeBEAMSF

SLI Use Case 2: SMS notification to users

SLI: User receives SMS within 5 minutes of an
authorization request approved/declined ?

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

SLI Use Case 2: SMS notification to users

SLI: User receives SMS within 5 minutes of an
authorization request approved/declined ?

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

SLI Use Case 2: SMS notification to users

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Practical SLI: Notification Service successfully
performs a request to <Vendor> to send a SMS
within 5 minutes of an authorization request
approved/declined

#CodeBEAMSF

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

How to measure?

#CodeBEAMSF

How to measure?

97

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

98

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Async

#CodeBEAMSF

Measuring higher-level SLIs

99

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Async

#CodeBEAMSF

Measuring higher-level SLIs

100

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

Team A Team B Team C

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

101

Approach 1

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

102

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

Publisher SLI Consumer SLI

Service
Uptime SLI Vendor SLA

Service
Duration SLI

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Async

#CodeBEAMSF

Measuring higher-level SLIs

103

Decouples teams!

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

104

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

Overall SLI?

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

105

Another Approach

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

106

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

107

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

sent_at - inserted_at

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

108

How to do this?

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

109

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

inserted_at

#CodeBEAMSF

Measuring higher-level SLIs

110

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Inserted_at
published_at

#CodeBEAMSF

Measuring higher-level SLIs

111

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at
consumed_at

#CodeBEAMSF

Measuring higher-level SLIs

112

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at

Consumed_at
sent_at

#CodeBEAMSF

Measuring higher-level SLIs

113

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at

Consumed_at
sent_at

sent_at - inserted_at

#CodeBEAMSF

Measuring higher-level SLIs

114

Another way to do this?

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Measuring higher-level SLIs

115

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF
Logging Infrastructure

Measuring higher-level SLIs

116

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Option 1: Decompose as lower level SLIs
Pros:

• Easier
• Decouples Teams

Cons:
• Difficult to estimate overall SLI

Measuring higher-level SLIs

117

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Option 2: Package relevant data throughout
services
Pros:

• Capture the overall SLI
Cons:

• Not extensible, need business logic to handle
the data

Measuring higher-level SLIs

118

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

Option 3: Rely on a logging/event infrastructure
Pros:

• Capture the overall SLI
• Extensible

Cons:
• Require such a feature in the logging infra

Measuring higher-level SLIs

119

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

#CodeBEAMSF

We did it!

120

For a good user experience, users must receive their transaction
SMS at most 5 minutes after the transaction took place

Lessons Learned
121

#CodeBEAMSF

Observability is so cool!

#CodeBEAMSF

What has our Observability team at Brex
learned so far?

#CodeBEAMSF

There is no “one-size-fits-all” solution

#CodeBEAMSF

Observability is not only for high throughput
systems

#CodeBEAMSF

The earlier Observability is incorporated into the
Engineering culture the better

#CodeBEAMSF

Creates a shared mental model

“Human” Element

“System” Element

Application

https://queue.acm.org/detail.cfm?id=3380777

https://queue.acm.org/detail.cfm?id=3380777

#CodeBEAMSF

#CodeBEAMSF

Observability?

Thank You!
130

#CodeBEAMSF

• Alex Hidalgo - Developing Meaningful SLIs for Fun and Profit (https://vimeo.com/369636345)
• Cory Watson - Dashboard Renaissance: How dashboards work and how to improve them

(https://vimeo.com/369638117)
• gRPC - https://grpc.io/
• Honeycomb Intro to Observability -

https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
• Jason - https://hexdocs.pm/jason/Jason.html
• Kafka - https://kafka.apache.org/
• OpenTelemetry - https://opentelemetry.io/
• Prometheus - https://prometheus.io/
• Sentry - https://sentry.io
• Spandex - https://github.com/spandex-project/spandex
• Statsd - https://github.com/statsd/statsd
• AWS EKS Image -

https://vitalflux.com/wp-content/uploads/2017/11/Deploy-first-cloud-native-apps-on-kubernetes.png
• CloudNative - https://stackify.com/cloud-native/

References

https://vimeo.com/369636345
https://vimeo.com/369638117
https://grpc.io/
https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
https://hexdocs.pm/jason/Jason.html
https://kafka.apache.org/
https://opentelemetry.io/
https://prometheus.io/
https://sentry.io
https://github.com/spandex-project/spandex
https://github.com/statsd/statsd
https://vitalflux.com/wp-content/uploads/2017/11/Deploy-first-cloud-native-apps-on-kubernetes.png
https://stackify.com/cloud-native/

