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What is Brex?
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Brex is rebuilding B2B financial products

Financial Operating System

Card Cash
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What is Brex?
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• 4 offices (NY, SF, YVR, SLC)
• 10 engineering teams
• 90% of backend codebase in Elixir
• More than 30 microservices
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30 microservices?
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Deployment A

IsoAuthServer

Enables services to be developed, deployed and 
scaled independently

8

IsoAuthServerIsoAuthServerService A

Database 
1

IsoAuthServerService B

Database 
2

Deployment B

Database 
2
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Product / Language / Regulation 
agnostic Platform

Platform approach to building our systems

9

IsoAuthServerIsoAuthServerOnboarding 
Service

Card Application 
Validation Service

Cash Application 
Validation Service

Onboarding UI 
Engine

Card 
Onboarding UI

Cash 
Onboarding UI
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Isolate products (Cash vs Card)
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Cash k8s cluster Card k8s cluster

IsoAuthServerIsoAuthServerCash Service A

IsoAuthServerIsoAuthServerCash Service B

IsoAuthServerIsoAuthServerCard Service A

IsoAuthServerIsoAuthServerCard Service B
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Microservices at Brex
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• Enables services to be developed, deployed and 
scaled independently

• Platform approach to building our systems
• Isolate products (Cash vs Card)
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• gRPC: synchronous RPC calls between Brex 
Services

• Events Infrastructure (Kafka): asynchronous 
communication

Brex Communication Infrastructure
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Why observability? And why not monitoring?
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Traditional Monitoring
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Traditional Monitoring

 UI

 
Data 

Access 
Layer

Business 
Logic

Monolithic Services
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Traditional Monitoring

 UI

 
Data 

Access 
Layer

Business 
Logic

Monolithic Services

Developers building software while 
Ops/SRE implement monitoring
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Limitations of traditional monitoring
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• Mostly focused on known failures
• Historically not designed for distributed 

systems
• Traditionally implemented after a system is 

built
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Last but not least, rhymes with...
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“Observability is a measure of how well internal 
states of a system can be inferred from 
knowledge of its external outputs”

Observability
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• Understand quickly new, unpredicted failures
• Principle of designing observable services
• A cloud native approach

Observability
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Observability: a cloud native approach

• Containerized
• Dynamically orchestrated
• Microservices-oriented
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Observability: so much better



Observability In Practice
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Case Study: Authorization flow

25

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP



Question 1
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Why are authorizations timing out?

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

gRPCTCP

• Credit card network notifying our systems of 
requests taking more than 2s

• Multiple services in the path of an 
authorization: which one is the bottleneck?
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Solution: Distributed tracing

Question: Why are 
authorizations timing out?

Trace

Spans
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• spandex library: Tracer API for Elixir with 
pluggable backend

○ Supports Datadog as backend (through the Agent)

○ Comes with built-in Plug adapters

• Interceptor pattern to serialize and deserialize 
tracing context in gRPC headers

Solution: Distributed tracing

Question: Why are 
authorizations timing out?
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Spandex Components

Datadog
Agent

Spandex

Key Value

-- --

Spandex.Strategy: Pdict 

Spandex Backend
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Spandex (default Pdict strategy) Example

{:ok, _} = Tracer.start_trace("123", “network”) Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}  

where Network.Tracer is an example  
trace_key

%Spandex.Trace{bag
gage: [], id: 707096, 
priority: 1, spans: [], 
stack: []}
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Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")
Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}  

where Network.Tracer is an example  
trace_key

%Spandex.Trace{bag
gage: [], id: 707096, 
priority: 1, spans: [], 
stack: 
[%Spandex.Span{id: 
744186, name: "123", 
trace_id: 707096, 
...}]}
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Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")

TestTracer.finish_span()

Datadog
AgentSpandex

Key Value

{:spandex_trace , Network.Tracer}  

where Network.Tracer is an example  
trace_key

%Spandex.Trace{bag
gage: [], id: 707096, 
priority: 1, spans: 
[%Spandex.Span{id: 
875246, parent_id: 
744186, trace_id: 
707096, ...}], stack: 
[...]}
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Spandex (default Pdict strategy) Example

{:ok, _} = TestTracer.start_trace("123", “network”)

TestTracer.start_span("queue")

TestTracer.finish_span()

TestTracer.finish_trace()

Datadog
AgentSpandex

Key Value

send to Datadog...
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Quick note on consistent service name
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Plug / Interceptor pattern

Request

Client 
Interceptor
adds 
tracing_ctx 
to header

Server 
Interceptor 
retrieves 
tracing_ctx 
from header

GRPC

%{
    span_id: …,
    priority_id: …,
    trace_id: …,
    …
}

%{
    span_id: …,
    priority_id: …,
    trace_id: …,
    …
}



#CodeBEAMSF

Plug / Interceptor pattern

Request

Client 
Interceptor
adds 
tracing_ctx 
to header

Server 
Interceptor 
retrieves 
tracing_ctx 
from header

GRPC

%{
    span_id: …,
    priority_id: …,
    trace_id: …,
    …
}

%{
    span_id: …,
    priority_id: …,
    trace_id: …,
    …
}

Tracing context 
recovered!
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• We mapped lost spans to operations executed 
within a spawned process

○ Tracing context is not propagated

• spandex Tracing library stores the tracing 
context in the pdict

○ pdict is tied to a process

Problem: some traces are losing spans
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• A caller-aware context
• When get/set and not yet initialized, looks up 

the chain of callers
○ Process.get(“$callers”) available since Elixir v1.8

• And stores a parent context into its own pdict

Solution: Brex.Context

Problem: Some traces are 
losing some spans.
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

Process.info(pid, :dictionary) → %{
:brex_context => %Brex.Context{
    identity_context: …
    customer_identity_context: …
    trace_id: …
    span_id: …
    priority: ...
}

}
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)

PID: 456

Brex.Context.get_trace_id()
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child) X

PID: 456

Brex.Context.get_trace_id()
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child)

PID: 456

Brex.Context.get_trace_id()

iex(1)> Process.get(“$callers”)

[#PID<123>]
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How does Brex.Context work?

Problem: Some traces are 
losing some spans.

pid process dict

123 (parent) %Brex.Context{...trace_id: 1}

456 (child) %Brex.Context{...trace_id: 1}

PID: 456

Brex.Context.get_trace_id()

> 1



We fixed the bottleneck!



Question 2
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• Some customers reported not receiving text 
message after a successful transaction

• Turned out some services would crash for 
different reasons

Background
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How do we ensure our team is notified when this 
happens?
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Question: How do we ensure our team 
is notified when this happens?

• We rolled out Sentry everywhere
• Super easy:

○ Logger.add_backend(Sentry.LoggerBackend)

Solution: Alerts on all exceptions/errors
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Question: How do we ensure our team 
is notified when this happens?

Done! Our microservices architecture is fully 
monitored!

Sentry everywhere
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• Every single crash/exception was reported
• Conflicts with “Let it crash” Erlang philosophy
• Many exceptions would recover through the 

Supervision tree

Problem: Alert fatigue and false positives
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Supervisor

GenServer GenServer

Application

  Core Logic
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Supervisor

GenServer GenServer

Application

  Core Logic

Shutdown
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Supervisor

GenServer GenServer

Application

  Core Logic

No user-visible 
impact!

Restart
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• Symptom vs Cause

• Track user-visible impact

Solution: Symptom Based Alerts

Problem: Alert fatigue and 
false positives
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• Symptom vs Cause

• How do we track user-visible impact? 

Solution: Symptom Based Alerts

Problem: Alert fatigue and 
false positives



SLI/SLO/SLAs
61
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SLIs & SLOs
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“a carefully defined quantitative 
measure of some aspect of the level 

of service that is provided”
- SRE Bible (Google SRE Handbook)

Introduction of SLIs/SLO/As

SLI
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Introduction of SLIs/SLO/As

SLI
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A reasonable % of your SLI

Introduction of SLIs/SLO/As

SLO

SLI
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Introduction of SLIs/SLO/As

Threshold

SLO

SLI



#CodeBEAMSF

Contract between Service Provider and User

Introduction of SLIs/SLO/As

SLA

SLO

SLI

Threshold
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• Request Latency
• System Throughput
• Error Rate
• Availability

Service Level Indicator
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• Request Latency
• System Throughput
• Error Rate
• Availability

Service Level Indicator
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What does Availability mean for a service?

Service Level Indicator
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Service’s readiness endpoint /ready returns 200

Service Level Indicator: Availability
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• Service is up, but can’t connect to downstream 
services

Service Level Indicator: Availability
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• Service is up, but can’t connect to downstream 
services

• Service is up, but is unreachable from external 
clients

• ...

Service Level Indicator: Availability
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This indicator is this dog:
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What is a good indicator?

Service Level Indicator: Availability
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• A good SLI measures User Journey
○ A user can be a person, another service, a robot…

Service Level Indicator
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We have 2s to reply to an authorization request 
performed by the Processor

SLI Use case 1: Card Swipe
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Good SLI: Requests to our service /auth 
endpoint returns a valid response 
(approved/declined) within 2s

SLI Use case 1: Card Swipe
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How to measure it?
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SLI: Requests to our service /auth endpoint returns a valid 
response (approved/declined) within 2s

81

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?
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SLI: Requests to our service /auth endpoint returns a valid 
response (approved/declined) within 2s

82

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?
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SLI: Requests to our service /auth endpoint returns a valid 
response (approved/declined) within 2s
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Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?
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SLI: Requests to our service /auth endpoint returns a valid 
response (approved/declined) within 2s

84

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here?
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Service Level Indicator

All options are valid and can be measured
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Service Level Indicator

Sometimes, only a proxy is available
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Service Level Indicator

The best is the closest to the user experience
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This one

89

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

Here
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It is hard to define and measure

Service Level Indicator
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Service Level Indicator - Use Case 2
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SLI Use Case 2: SMS notification to users

For a good user experience, users must receive 
their transaction SMS at most 5 minutes after the 

transaction took place
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SLI Use Case 2: SMS notification to users

SLI: User receives SMS within 5 minutes of an 
authorization request approved/declined ?

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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SLI Use Case 2: SMS notification to users

SLI: User receives SMS within 5 minutes of an 
authorization request approved/declined ?

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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SLI Use Case 2: SMS notification to users

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Practical SLI: Notification Service successfully 
performs a request to <Vendor> to send a SMS 
within 5 minutes of an authorization request 
approved/declined
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For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

How to measure?
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How to measure? 

97

Processor ELB
IsoAuthServerIsoAuthServerConnection

Handler

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

IsoAuthServerIsoAuthServerStatement
Service

Kafka
Async

gRPCTCP

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Async
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Async
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

Team A Team B Team C

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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Approach 1

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

<Vendor>

Publisher SLI Consumer SLI

Service 
Uptime SLI Vendor SLA

Service 
Duration SLI

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Async
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Measuring higher-level SLIs
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Decouples teams!

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

Overall SLI?

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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Another Approach

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

sent_at - inserted_at

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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How to do this?

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

inserted_at
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Inserted_at
published_at
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at
consumed_at



#CodeBEAMSF

Measuring higher-level SLIs

112

IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at

Consumed_at
sent_at
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place

Inserted_at
Published_at

Consumed_at
sent_at

sent_at - inserted_at
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Measuring higher-level SLIs
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Another way to do this?

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Logging Infrastructure

Measuring higher-level SLIs
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IsoAuthServerIsoAuthServerAuthorization
Server

IsoAuthServerIsoAuthServerNotification
Service

Kafka

Async
<Vendor>

inserted_at

published_at

consumed_at
sent_at

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Option 1: Decompose as lower level SLIs
Pros:

• Easier
• Decouples Teams

Cons:
• Difficult to estimate overall SLI

Measuring higher-level SLIs

117

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Option 2: Package relevant data throughout 
services
Pros:

• Capture the overall SLI
Cons:

• Not extensible, need business logic to handle 
the data

Measuring higher-level SLIs

118

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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Option 3: Rely on a logging/event infrastructure
Pros:

• Capture the overall SLI
• Extensible

Cons:
• Require such a feature in the logging infra

Measuring higher-level SLIs
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For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place
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We did it!

120

For a good user experience, users must receive their transaction 
SMS at most 5 minutes after the transaction took place



Lessons Learned
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Observability is so cool!
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What has our Observability team at Brex 
learned so far?
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There is no “one-size-fits-all” solution
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Observability is not only for high throughput 
systems
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The earlier Observability is incorporated into the 
Engineering culture the better
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Creates a shared mental model

“Human” Element

“System” Element

Application

https://queue.acm.org/detail.cfm?id=3380777

https://queue.acm.org/detail.cfm?id=3380777
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Observability?



Thank You!
130
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• Alex Hidalgo - Developing Meaningful SLIs for Fun and Profit (https://vimeo.com/369636345)
• Cory Watson - Dashboard Renaissance: How dashboards work and how to improve them 

(https://vimeo.com/369638117)
• gRPC - https://grpc.io/
• Honeycomb Intro to Observability - 

https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
• Jason - https://hexdocs.pm/jason/Jason.html
• Kafka - https://kafka.apache.org/
• OpenTelemetry - https://opentelemetry.io/
• Prometheus - https://prometheus.io/
• Sentry - https://sentry.io 
• Spandex - https://github.com/spandex-project/spandex
• Statsd - https://github.com/statsd/statsd
• AWS EKS Image - 

https://vitalflux.com/wp-content/uploads/2017/11/Deploy-first-cloud-native-apps-on-kubernetes.png
• CloudNative - https://stackify.com/cloud-native/
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