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Pattern match warnings

data Maybe a = Nothing m

| Just a

isdJust :: Maybe -> Bool
isdJust (Just ) True
isdJust Nothing = False




Pattern match warnings

isdJust :: Maybe a -> Bool M

isdJust Nothing = False

Runtime
error

ghci> isJdust (Just True)
*** Exception: <interactive>:16:5-16: (bad)
Non-exhaustive patterns in function isJust



Pattern match warnings

isdJust :: Maybe a -> Bool Complle Tlme error
(good)

isdJust Nothing = False

ghci> :load Foo.hs
Foo.hs:16:5: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘isJust’: Patterns not matched: Just




Pattern match warnings

= Task: produce good compile time warnings for

" Missing equations isJust :: Maybe a -> Bool
isdJust Nothing = False

= Redundant equations [FRS T aEseumvEy Se

isdJust Nothing
isdJust (Just )
isdJust Nothing

" First reaction: €asy peasy
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Interactions between
arguments



Interactions: not so easy

berry :: Bool -> Bool -> Bool -> Int
berry True False

berry False True

berry True False

= Which cases (if any) are not matched?



Interactions: not so easy

berry :: Bool -> Bool -> Bool -> Int
berry True False =

berry False True

berry True False

= Which cases (if any) are not matched?

berry True True True

berry False False False



Laziness



Laziness: maybe not “easy” at all




Laziness: maybe not “easy” at all

Bool -> Int
= 1

2 -- Is this equation redundant?
3

ghci> £ (error “urk”) True

= With equation 2: get "exception: Urk"

= Without equation 2: get 3 So equation 2 is not

redundant (cannot be
omitted)




Laziness: maybe not “easy” at all

Bool -> Int
= 1

2 -- Is this equation redundant?
3

- A\ 77 So equation 2 is not
ghC1> f (errOr urk ) True redundant (cannot be

omitted)

= With equation 2: get "exception: Urk"
= Without equation 2: get 3

And yet its RHS is
= But can we ever return 2?2 Nol! inaccessible




Laziness: maybe not “easy” at all

Bool -> Int

=1

= 2 -- Is this equation redundant?
= 3

<interactive>:1:22: warning: [-Woverlapping-patterns]
Pattern match has inaccessible right hand side
In an equation for ‘f’: f True False = ...

And yet its RHS is
= But can we ever return 2?2 Nol! inaccessible




Bang patterns
and strict data constructors



Inhabitation

data Void —— No data constructors

= The only inhabitant of Void is bottom - Int -> Void

h :
h x = h x

:: Void -> Bool
= True

f (error “urk”) -- This call is well typed
= £ (h 3) -- This is well typed too




Inhabitation and strict constructors

data Void —-—- No data constructors
data SMaybe a = SNothing | SJust 'a -- Strict Maybe

f :: SMaybe Void -> Int
f SNothing 1
f (SJust ) 2 -- Is this redundant?




Inhabitation and strict constructors

data Void -—- No data constructors
data SMaybe a = SNothing | SJust 'a -- Strict Maybe
f :: SMaybe Void -> Int
f SNothing =
£{SIust—F)—=12 -- Redundant!
= The only inhabitants of (SMaybe Void) are
1. SNothing
2. bottom

= The first equation matches (1) and diverges on (2)

® So the second equation is redundant



Inhabitation and bang patterns

data Void —-—- No data constructors
data Maybe a = Nothing | Just a

f :: Maybe Void -> Int
f Nothing =1
f (Just ! ) —-— Is this redundant?

= The only inhabitants of (Maybe Void) are
1. Nothing
2. Just bottom

= The second equation diverges on (2)

= So the second equation is is not redundant,
but has inaccessible RHS



Guards and view patterns



Guards

sign :: Int -> Ordering
sign x | x < 0 = LT

| x == = EQ -- Is this redundant?
| otherwise = GT -- Is this redundant?
-- Are there any missing equations?

= Clearly undecidable in general
= But we want to do a good job in special cases

m E.g. otherwise/True always succeeds



Pattern guards

last :: [a] -> Maybe a

last xs | (y: ) <- reverse xs Just y
| otherwise = Nothing

= Very like

last :: [a] -> Maybe a
last xs = case reverse xs of

(y: ) -> Just y
-> Nothing




Pattern guards

last :: [a] -> Maybe a

last xs | (y: ) <- reverse xs Just y
| [] <- reverse Xxs Nothing

= Here we might reasonably hope that GHC will see
that these equations are exhaustive



Mixing pattern matching and pattern guards

get :: Maybe Int -> Int
get Nothing = 0
get x | Just y <- x Y

. Again exhaustive,. BT

Ordinary pattern match




View patterns (expr -> pat)

last :: [a] -> Maybe a

last (reverse -> y: )
last (reverse -> [])

Just y
Nothing

m Again, we might reasonably hope that GHC will see
that these equations are exhaustive



Long distance information



Long distance information

data Grade = A | B | C

:: Grade -> blah

This case is exhaustive

. (case g of
B -> True
C -> False) ..




Are we having fun yet?

Multiple arguments

Laziness

Inhabitation, strict data constructors
Bang patterns

Guards and view patterns

Long distance interactions



GADTs: double the fun



GADTs

data T a where
TInt :: Int -> T Int
TBool :: Bool -> T Bool

getInt :: T Int -> Int
getInt (TInt i) = 1
-—- Are any equations missing?

= What about: getInt (TBool b)?



GADTs

data T a where
TInt :: Int -> T Int
TBool :: Bool -> T Bool

getInt :: T Int -> Int
getInt (TInt i) = 1
-—- Are any equations missing? No!!

= No: this single equation is exhaustive



GADTs and long distance information

data T a where
TInt :: Int -> T Int This case is
TBool :: Bool -> T Bool exhaustive

foo :: Ta->Ta->Ta
foo (TInt il) vy ..(case y of TInt i2 -> .) ..
foo (TBool bl) vy ..(case y of TBool b2 -> ..) ..




GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) = bl || b2

-—- Are any equations missing?




GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) = bl || b2

-- Are any equations missing? Yes!

® What about: foo (TInt il) (error “"urk")?
= Yikes! This is well typed; and fails to match the first egn



GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) bl || b2
foo (TInt ) True




GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) bl || b2

foo (TInt ) Y case y of { }

= {-# LANGUAGE EmptyCase #-}
= The empty case is strict, so will forcey.
= But we should check that the case y of {} is exhaustive.. long distance.



Pattern synonyms



Pattern synonyms

pattern Snoc xs x <- (reverse -> (x:xs))

{-# COMPLETE Snoc, [] #-}

last :: [a] -> Maybe a
last [] Nothing
last (Snoc xs x) Just x

These equations
are complete

Asserts that {Snoc,[]}
covers all values



Panicl!
My head just exploded

Multiple args

v

! Lon, distance

/ RERE

Guards

View pctterns

As pd‘rer'.ﬂ

Pattern
i L Sirictness






patVectProc(p, .

patVectProc (p, S) = (C,

s w € Cpu, Fsar w}
) €EUP Y, Fsar w}
' €E DPu, Fsar w}

U, D) 2

where 4 | v €
4 AS'!,

Cpuv = C (alwaysempty or singleton set)

[CNIL] .
[CCONCON] (K;P) )
[CCONVAR] (K p)q)

(F Fep A)
T+ (K; @)@ > A)
(THzid> A)

[CVAR]
[CGUARD]

(zP) TrFuip> A)
(p+e)p) 'Fup> A)

[UNIL] €
[UCONCON]
[UCONVAR]

IT'kFe> A)

(K:P)§) (CTrziv A)

[UVAR]
[UGUARD]

(zP) Truup> A)
(pe—e)p) THID> A)

[DNIL]
[DCONCON]
[DCONVAR]

D e
D
D((K;p)q) (TrRzxup A)

The> A)

[DVAR]
[DGUARD]

(zP) TrFuip> A)

D
D((p+e)p) CHI> A)

(K:p)@ (CF (K;@)@ > A) =

(K;p)q) TH(K;@)wp> A) =

=4PHep A}
map (kcon K;) (C(Fq) (CH4dw v A)) ifK; =K;
1] if K; # K
— C((K:p) 9 (T’ F (K: §) @ > A)
where y#I' a#l' (z1z) €T K; =VYa.Q=>T—> T
=T a0
A'=AUQUT~T, Uz ~ K; §
map (ucon u) (C (p) (T,z:tH4d > AUz x u))
map tail (C (pp) (UyythFyu > AUy xe))

where z#I" I'Fwu: T
where y#1' I'te: 7T

A big step
forward

Upv=TU

%]

map (kcon K;) (U (pq) (T Huw > A) if K; = K

{TH(K;id)w > A} if K; # K
= UKJ U(K:p)q) IT"H(K;9)d > A)

where #I' a#I' (z:7z) €l K; 2Va.Q=>T— T
IV=Ljaf7T Al'=AJUQUr~ntUre K;¥j

exactly like [CVAR], with U instead of C
exacily like [CGUARD], with U instead of C

But
tricky

buggy
slow

Dpv=D

1)
map (kcon K;) (D (§q) (THadw » A) if K; = K
) if K; # K
—{Trzib> AU(z~1)} U D((K;ip)q (I" + (K; ) @ > A')
where y#I' ad#l' (z:11z) €T K; =Vi.Q=>T—>T
IM'=T,aduq7 A=AU@QUrrrcgUzr K;q
exactly like [CVAR], with D instead of C
exactly like [CGUARD]. with D instead of C
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A new, simple, modular approach

Two simple ideas
1. Desugar all pattern matching to guards
2. Collect the available facts into a fact-base a



Desugar pattern matching to guards

f (Just (!'xs, )) ys@(y: ) | y > 3

f Nothing ZS

f as ys

| Just t <- as
(xs,v) <- t
Ixs
(y:w) <- ys
let b = (y > 3)
True <- b
rhsl
Nothing <- as
let zs = ys
rhs2

desugars thus:

4
4
4
4
4
I
4



Desugar pattern matching to guards

£ (Just (!xs,_)) ys@(y:_)
f Nothing ZS

One-level matching (xs.v) <= t

Ixs
(y:w) <- ys

let b = (y > 3)
True <- b Ordinary let-binding

rhsl
Nothing <- as

let zs = ys . :
rhs2 Fix name differences

Simply evaluates xs




Desugar pattern matching to guards

grdi=lx
| Axdl . . xin<y
| let x=e

This is enough to express
As-patterns

View patterns

Record patterns

Pattern guards

Wildcard patterns
Overloaded literal patterns

List and tuple patterns
n+k patterns

Bang patterns

Lazy patterns

Pattern synonyms



After desugaring

gll, gl2, gl3
g2l, g22
g3l, g32, g33, g34

f xy
I
I
I

grd =y NB: this desugaring is for
| Axl..xiney pattern-match overlap
| let x=e checking only,

not execution



All values

* Missing equations

* Values not covered by clause 1

Values not covered by clauses 1 or 2

We want to
report these -

runtime error

* Values not covered by clauses 1, 2, or 3 could be a



All values

* Missing equations

Clause 1 Question
How do we represent a
* Values not covered by clause 1 (possibly infinite)
set of values?

Values not covered by clauses 1 or 2

We want to
report these -

* Values not covered by clauses 1, 2, or 3 could be a
runtime error




Idea: represent set of values by a factbase A

" A= {x:Maybe Bool | €} represents
{1, Nothing, Just 1, Just True, Just False} Things that are

true about every
value in the set

" A= {xMaybe Bool| Nothing—x} represents
{Nothing}

" A= {x:Maybe Bool| Just (y.Bool)<x} represents
{ust L, Just True, Just False}

" A={xMaybe Bool [fust (y.Bool)—x, True<y} represents
{/ust T'rue}



Idea: represent set of values by a factbase A

= A type describes a set of values
m So does A. So A is a sort of type.

= Tndeed a well-known sort of type: a refinement type
{x:.Maybe Int | Just (y./nt)—x, y>3}



Example

f (Just True) = rhs

Desugars to

| Just y <- x, True <- y = rhs



A={x-Maybe Bool | €}

¥

Example

| Just y <- x, True <- y =

¥ Values not covered by the equation

A={x:-Maybe Bool | x+/ust, x+1} U

{x:Maybe Bool| Just (y.Bool)—x, y+True, y+1}

How do we do that in general?



Computing the uncovered set

U, (let x=e) :gs)=U( A+ (let x=¢), gs)
..and that is all!



A= [rMaybe ool | ] Reporting uncovered sets

Just y <- x, True <- y =

A={ x:Maybe Bool| x+/ust, x#L1} U

{ xMaybe Bool| Just (y.Bool)—x, y+True, y+1}

= Next question: what values sa’risf¥ the A that falls out of the
bottom - these are the cases that are not covered

= Empty => equations are exhaustive.



Reporting uncovered sets

f x | Just y <- x, True <- y =
¥

A={ x:Maybe Bool| x+/ust, x#L1} U

{ xMaybe Bool| Just (y.Fool)—x, y+True, y+1}

Easy!

= Pick each disjunct in turn [ x:Maybe Bool | 8]
®  Start from x:Maybe Bool

= Pick a value of x that works for &

= Repeat



Example

A={ x:-Maybe Bool | x#Just, x£1}U ...
= Start from x:Maybe Bool
® Pick a value of x that works for x+/ust, x+1
® y= Nothing looks good. (NB in general there may be many.)

= Done



Example

A= ..U{x:Maybe Bool| Just (y.Fool)x, ythrue,yiJ_}

® Start from x:Maybe Fool

® Pick a value of x that works for Just (y:Fool)—x
m y=Just(y:Bool) looks good.

m Pick a value of y that works for y#77rue, y+.1

® y= False looks good

Result: x=/ust False



Example

f (Just True) = rhs

desugars to

f x | Just y <- x, True <- y =

reports uncovered possibilities
x=Nothing

x=/ust False



g (Just y)
g Nothing

desugars to

gx | Just 'y <- x

| Nothing <- x

¥

A= {x:Maybe Bool | x#/ust, x+ 1, x#+Nothing}

* What values does this a represent?



g (Just y)
g Nothing

A= {x:Maybe Bool | x+/usS=1, x+ Nothing}

* What values does this a represent?



Scaling up to all of Haskell



Redundant/inaccessible equations

= Modifying U(4, gs) a little bit deals with redundant/
inaccessible equations

= Pattern synonyms: some footwork when coming up with
uncovered sets. E.g. what values are expressed by

A={x:[/nt] | x#] [ x+Snoc, x+1}
Answer: none, because {[], Snhoc} is COMPLETE



Pattern synonyms
= Just needs some footwork when coming up with uncovered
sefts.
= E.g. what values are expressed by
A={x:[Int] | x#] ] x#Snoc, x+1}
® Answer: hone, because {[], Shoc} is COMPLETE



GADTs

= A contains type equalities as well as ferm equalities

data T a where
TBool :: T Bool

f :: a->Ta ->a
f xy | TBool <- y, True <- x = ..

" A={xa, .7 a|TBooly, a~Boollrue—x}

m Re-uses GHC's type-constraint solver



Long distance information: easy!

data Grade = A | B | C

:: Bool -> Grade -> blah

. (case g of Simply start this case

B -> True from the enclosing |
C -> False) ..

We get to this RHS with




Conclusion

= A long, long road

= A satisfying conclusion
® Theory is a lot simpler
m Code is a lot simpler
= And a lot shorter
= And runs faster
= And nails many bugs




