PATTERN MATCH WARNINGS
How hard can it be?

Simon Peyton Jones

Microsoft Research

With lots of help from
Ryan Scott (Indiana) and Sebastian Graf (Karlsruhe)

October 2019

Programming language research

Excellent research plan:
= |Looks hard

® Think think think

= Js easy

Programming language research

Excellent research plan:
= | ooks hard

m Think think think
= Js easy

Less excellent plan
= | ooks easy

= Think think think
= Ts hard

Pattern match warnings

data Maybe a = Nothing m

| Just a

isdJust :: Maybe -> Bool
isdJust (Just) True
isdJust Nothing = False

Pattern match warnings

isdJust :: Maybe a -> Bool M

isdJust Nothing = False

Runtime
error

ghci> isJdust (Just True)
*** Exception: <interactive>:16:5-16: (bad)
Non-exhaustive patterns in function isJust

Pattern match warnings

isdJust :: Maybe a -> Bool Complle Tlme error
(good)

isdJust Nothing = False

ghci> :load Foo.hs
Foo.hs:16:5: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘isJust’: Patterns not matched: Just

Pattern match warnings

= Task: produce good compile time warnings for

" Missing equations isJust :: Maybe a -> Bool
isdJust Nothing = False

= Redundant equations [FRS T aEseumvEy Se

isdJust Nothing
isdJust (Just)
isdJust Nothing

" First reaction: €asy peasy

File Edit View History Bookmarks Tools Help = Y4

< Mich: | Machine 2 New Fixir ®© Jean & Jean rich 3% Slac #15¢ #15€ #16 #17 #1400 EDSNESIN + v
c @ ® b.haskell.org/g bel_name[]=pattern+matc v IN @D ©

5 Microsoft O microsoft/knossos-ks... @ NCT Baltic Voyage B Holidays 5 Quantum 5 Royal Society 5 Chesterton 5 Haskell £ GHC [Linear types B cas B Travel B Tools

HaSke“. Projects v Groups v More v v b v Search or jump to... O@ N9 e @

Compiler s GHC Issues

Open 23 Closed 57 All 80 i Edit issues m
9 [ELVSl ~"pattern match warnings” % Created date =

Closed type families: Warn if it doesn't handle all cases

15
#10116 - opened 4 years ago by Andrew Martin

A5 updated 6 days ago 8 O T i C k TS

Warning for redundant constraints: interaction with pattern matching

#10183 - opened 4 years ago by Simon Peyton Jones [Tracimport
&5

Easy peasy?

» 4

updated 1 week ago

[]
New pattern-match check can be non-performant @ 21 O f W h l C h
=
#11195 - opened 3 years ago by Richard Eisenberg @ 8.4.1 [Tracimport X bug J compiler crash] updated 1 month ago
paate C ago
&5 : °

Pattern match checker exceeded (2000000) iterations 2 I a r. e o p e n

#11822 - opened 3 years ago by waldmann@imn.htwk-leipzig.de [bug]
Aas

updated 2 weeks ago

Pattern synonym exhaustiveness checks don't play well with EmptyCase

#13717 - opened 2 years ago by David Feuer @ 8.10.1 PatternSynonyms a
AS

® ™10
updated 1 month ago

Pattern-match warnings for datatypes with COMPLETE sets break abstraction

#13964 - opened 2 years ago by Ryan Scott PatternSynonyms
A5

® =10
updated 1 month ago

{-# complete #-} should be able to be at least partially type directed

#14422 - opened 1 year ago by Edward Kmett PatternSynonyms
5 & C

mmddncm mandab FUQRIGEUN IQipl jiv

-1

updated 2 months ago

Interactions between
arguments

Interactions: not so easy

berry :: Bool -> Bool -> Bool -> Int
berry True False

berry False True

berry True False

= Which cases (if any) are not matched?

Interactions: not so easy

berry :: Bool -> Bool -> Bool -> Int
berry True False =

berry False True

berry True False

= Which cases (if any) are not matched?

berry True True True

berry False False False

Laziness

Laziness: maybe not “easy” at all

Laziness: maybe not “easy” at all

Bool -> Int
= 1

2 -- Is this equation redundant?
3

ghci> £ (error “urk”) True

= With equation 2: get "exception: Urk"

= Without equation 2: get 3 So equation 2 is not

redundant (cannot be
omitted)

Laziness: maybe not “easy” at all

Bool -> Int
= 1

2 -- Is this equation redundant?
3

- A\ 77 So equation 2 is not
ghC1> f (errOr urk) True redundant (cannot be

omitted)

= With equation 2: get "exception: Urk"
= Without equation 2: get 3

And yet its RHS is
= But can we ever return 2?2 Nol! inaccessible

Laziness: maybe not “easy” at all

Bool -> Int

=1

= 2 -- Is this equation redundant?
= 3

<interactive>:1:22: warning: [-Woverlapping-patterns]
Pattern match has inaccessible right hand side
In an equation for ‘f’: f True False = ...

And yet its RHS is
= But can we ever return 2?2 Nol! inaccessible

Bang patterns
and strict data constructors

Inhabitation

data Void —— No data constructors

= The only inhabitant of Void is bottom - Int -> Void

h :
h x = h x

:: Void -> Bool
= True

f (error “urk”) -- This call is well typed
= £ (h 3) -- This is well typed too

Inhabitation and strict constructors

data Void —-—- No data constructors
data SMaybe a = SNothing | SJust 'a -- Strict Maybe

f :: SMaybe Void -> Int
f SNothing 1
f (SJust) 2 -- Is this redundant?

Inhabitation and strict constructors

data Void -—- No data constructors
data SMaybe a = SNothing | SJust 'a -- Strict Maybe
f :: SMaybe Void -> Int
f SNothing =
£{SIust—F)—=12 -- Redundant!
= The only inhabitants of (SMaybe Void) are
1. SNothing
2. bottom

= The first equation matches (1) and diverges on (2)

® So the second equation is redundant

Inhabitation and bang patterns

data Void —-—- No data constructors
data Maybe a = Nothing | Just a

f :: Maybe Void -> Int
f Nothing =1
f (Just !) —-— Is this redundant?

= The only inhabitants of (Maybe Void) are
1. Nothing
2. Just bottom

= The second equation diverges on (2)

= So the second equation is is not redundant,
but has inaccessible RHS

Guards and view patterns

Guards

sign :: Int -> Ordering
sign x | x < 0 = LT

| x == = EQ -- Is this redundant?
| otherwise = GT -- Is this redundant?
-- Are there any missing equations?

= Clearly undecidable in general
= But we want to do a good job in special cases

m E.g. otherwise/True always succeeds

Pattern guards

last :: [a] -> Maybe a

last xs | (y:) <- reverse xs Just y
| otherwise = Nothing

= Very like

last :: [a] -> Maybe a
last xs = case reverse xs of

(y:) -> Just y
-> Nothing

Pattern guards

last :: [a] -> Maybe a

last xs | (y:) <- reverse xs Just y
| [] <- reverse Xxs Nothing

= Here we might reasonably hope that GHC will see
that these equations are exhaustive

Mixing pattern matching and pattern guards

get :: Maybe Int -> Int
get Nothing = 0
get x | Just y <- x Y

. Again exhaustive,. BT

Ordinary pattern match

View patterns (expr -> pat)

last :: [a] -> Maybe a

last (reverse -> y:)
last (reverse -> [])

Just y
Nothing

m Again, we might reasonably hope that GHC will see
that these equations are exhaustive

Long distance information

Long distance information

data Grade = A | B | C

:: Grade -> blah

This case is exhaustive

. (case g of
B -> True
C -> False) ..

Are we having fun yet?

Multiple arguments

Laziness

Inhabitation, strict data constructors
Bang patterns

Guards and view patterns

Long distance interactions

GADTs: double the fun

GADTs

data T a where
TInt :: Int -> T Int
TBool :: Bool -> T Bool

getInt :: T Int -> Int
getInt (TInt i) = 1
-—- Are any equations missing?

= What about: getInt (TBool b)?

GADTs

data T a where
TInt :: Int -> T Int
TBool :: Bool -> T Bool

getInt :: T Int -> Int
getInt (TInt i) = 1
-—- Are any equations missing? No!!

= No: this single equation is exhaustive

GADTs and long distance information

data T a where
TInt :: Int -> T Int This case is
TBool :: Bool -> T Bool exhaustive

foo :: Ta->Ta->Ta
foo (TInt il) vy ..(case y of TInt i2 -> .) ..
foo (TBool bl) vy ..(case y of TBool b2 -> ..) ..

GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) = bl || b2

-—- Are any equations missing?

GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) = bl || b2

-- Are any equations missing? Yes!

® What about: foo (TInt il) (error “"urk")?
= Yikes! This is well typed; and fails to match the first egn

GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) bl || b2
foo (TInt) True

GADTs and multiple arguments

data T a where data U a where
TInt :: Int -> T Int UChar :: Char -> U Char
TBool :: Bool -> T Bool UBool :: Bool -> U Bool

foo :: T a -> U a -> Bool
foo (TBool bl) (UBool b2) bl || b2

foo (TInt) Y case y of { }

= {-# LANGUAGE EmptyCase #-}
= The empty case is strict, so will forcey.
= But we should check that the case y of {} is exhaustive.. long distance.

Pattern synonyms

Pattern synonyms

pattern Snoc xs x <- (reverse -> (x:xs))

{-# COMPLETE Snoc, [] #-}

last :: [a] -> Maybe a
last [] Nothing
last (Snoc xs x) Just x

These equations
are complete

Asserts that {Snoc,[]}
covers all values

Panicl!
My head just exploded

Multiple args

v

! Lon, distance

/ RERE

Guards

View pctterns

As pd‘rer'.ﬂ

Pattern
i L Sirictness

patVectProc(p, .

patVectProc (p, S) = (C,

s w € Cpu, Fsar w}
) €EUP Y, Fsar w}
' €E DPu, Fsar w}

U, D) 2

where 4 | v €
4 AS'!,

Cpuv = C (alwaysempty or singleton set)

[CNIL] .
[CCONCON] (K;P))
[CCONVAR] (K p)q)

(F Fep A)
T+ (K; @)@ > A)
(THzid> A)

[CVAR]
[CGUARD]

(zP) TrFuip> A)
(p+e)p) 'Fup> A)

[UNIL] €
[UCONCON]
[UCONVAR]

IT'kFe> A)

(K:P)§) (CTrziv A)

[UVAR]
[UGUARD]

(zP) Truup> A)
(pe—e)p) THID> A)

[DNIL]
[DCONCON]
[DCONVAR]

D e
D
D((K;p)q) (TrRzxup A)

The> A)

[DVAR]
[DGUARD]

(zP) TrFuip> A)

D
D((p+e)p) CHI> A)

(K:p)@ (CF (K;@)@ > A) =

(K;p)q) TH(K;@)wp> A) =

=4PHep A}
map (kcon K;) (C(Fq) (CH4dw v A)) ifK; =K;
1] if K; # K
— C((K:p) 9 (T’ F (K: §) @ > A)
where y#I' a#l' (z1z) €T K; =VYa.Q=>T—> T
=T a0
A'=AUQUT~T, Uz ~ K; §
map (ucon u) (C (p) (T,z:tH4d > AUz x u))
map tail (C (pp) (UyythFyu > AUy xe))

where z#I" I'Fwu: T
where y#1' I'te: 7T

A big step
forward

Upv=TU

%]

map (kcon K;) (U (pq) (T Huw > A) if K; = K

{TH(K;id)w > A} if K; # K
= UKJ U(K:p)q) IT"H(K;9)d > A)

where #I' a#I' (z:7z) €l K; 2Va.Q=>T— T
IV=Ljaf7T Al'=AJUQUr~ntUre K;¥j

exactly like [CVAR], with U instead of C
exacily like [CGUARD], with U instead of C

But
tricky

buggy
slow

Dpv=D

1)
map (kcon K;) (D (§q) (THadw » A) if K; = K
) if K; # K
—{Trzib> AU(z~1)} U D((K;ip)q (I" + (K;) @ > A')
where y#I' ad#l' (z:11z) €T K; =Vi.Q=>T—>T
IM'=T,aduq7 A=AU@QUrrrcgUzr K;q
exactly like [CVAR], with D instead of C
exactly like [CGUARD]. with D instead of C

4

\

\

ian Graf

-
0]
(qV)

O
Q

gp

e
]

-a
&l

p
| waen

’ov 8

\é.

L |

o

-

A new, simple, modular approach

Two simple ideas
1. Desugar all pattern matching to guards
2. Collect the available facts into a fact-base a

Desugar pattern matching to guards

f (Just (!'xs,)) ys@(y:) | y > 3

f Nothing ZS

f as ys

| Just t <- as
(xs,v) <- t
Ixs
(y:w) <- ys
let b = (y > 3)
True <- b
rhsl
Nothing <- as
let zs = ys
rhs2

desugars thus:

4
4
4
4
4
I
4

Desugar pattern matching to guards

£ (Just (!xs,_)) ys@(y:_)
f Nothing ZS

One-level matching (xs.v) <= t

Ixs
(y:w) <- ys

let b = (y > 3)
True <- b Ordinary let-binding

rhsl
Nothing <- as

let zs = ys . :
rhs2 Fix name differences

Simply evaluates xs

Desugar pattern matching to guards

grdi=lx
| Axdl . . xin<y
| let x=e

This is enough to express
As-patterns

View patterns

Record patterns

Pattern guards

Wildcard patterns
Overloaded literal patterns

List and tuple patterns
n+k patterns

Bang patterns

Lazy patterns

Pattern synonyms

After desugaring

gll, gl2, gl3
g2l, g22
g3l, g32, g33, g34

f xy
I
I
I

grd =y NB: this desugaring is for
| Axl..xiney pattern-match overlap
| let x=e checking only,

not execution

All values

* Missing equations

* Values not covered by clause 1

Values not covered by clauses 1 or 2

We want to
report these -

runtime error

* Values not covered by clauses 1, 2, or 3 could be a

All values

* Missing equations

Clause 1 Question
How do we represent a
* Values not covered by clause 1 (possibly infinite)
set of values?

Values not covered by clauses 1 or 2

We want to
report these -

* Values not covered by clauses 1, 2, or 3 could be a
runtime error

Idea: represent set of values by a factbase A

" A= {x:Maybe Bool | €} represents
{1, Nothing, Just 1, Just True, Just False} Things that are

true about every
value in the set

" A= {xMaybe Bool| Nothing—x} represents
{Nothing}

" A= {x:Maybe Bool| Just (y.Bool)<x} represents
{ust L, Just True, Just False}

" A={xMaybe Bool [fust (y.Bool)—x, True<y} represents
{/ust T'rue}

Idea: represent set of values by a factbase A

= A type describes a set of values
m So does A. So A is a sort of type.

= Tndeed a well-known sort of type: a refinement type
{x:.Maybe Int | Just (y./nt)—x, y>3}

Example

f (Just True) = rhs

Desugars to

| Just y <- x, True <- y = rhs

A={x-Maybe Bool | €}

¥

Example

| Just y <- x, True <- y =

¥ Values not covered by the equation

A={x:-Maybe Bool | x+/ust, x+1} U

{x:Maybe Bool| Just (y.Bool)—x, y+True, y+1}

How do we do that in general?

Computing the uncovered set

U, (let x=e) :gs)=U(A+ (let x=¢), gs)
..and that is all!

A= [rMaybe ool |] Reporting uncovered sets

Just y <- x, True <- y =

A={ x:Maybe Bool| x+/ust, x#L1} U

{ xMaybe Bool| Just (y.Bool)—x, y+True, y+1}

= Next question: what values sa’risf¥ the A that falls out of the
bottom - these are the cases that are not covered

= Empty => equations are exhaustive.

Reporting uncovered sets

f x | Just y <- x, True <- y =
¥

A={ x:Maybe Bool| x+/ust, x#L1} U

{ xMaybe Bool| Just (y.Fool)—x, y+True, y+1}

Easy!

= Pick each disjunct in turn [x:Maybe Bool | 8]
® Start from x:Maybe Bool

= Pick a value of x that works for &

= Repeat

Example

A={ x:-Maybe Bool | x#Just, x£1}U ...
= Start from x:Maybe Bool
® Pick a value of x that works for x+/ust, x+1
® y= Nothing looks good. (NB in general there may be many.)

= Done

Example

A= ..U{x:Maybe Bool| Just (y.Fool)x, ythrue,yiJ_}

® Start from x:Maybe Fool

® Pick a value of x that works for Just (y:Fool)—x
m y=Just(y:Bool) looks good.

m Pick a value of y that works for y#77rue, y+.1

® y= False looks good

Result: x=/ust False

Example

f (Just True) = rhs

desugars to

f x | Just y <- x, True <- y =

reports uncovered possibilities
x=Nothing

x=/ust False

g (Just y)
g Nothing

desugars to

gx | Just 'y <- x

| Nothing <- x

¥

A= {x:Maybe Bool | x#/ust, x+ 1, x#+Nothing}

* What values does this a represent?

g (Just y)
g Nothing

A= {x:Maybe Bool | x+/usS=1, x+ Nothing}

* What values does this a represent?

Scaling up to all of Haskell

Redundant/inaccessible equations

= Modifying U(4, gs) a little bit deals with redundant/
inaccessible equations

= Pattern synonyms: some footwork when coming up with
uncovered sets. E.g. what values are expressed by

A={x:[/nt] | x#] [x+Snoc, x+1}
Answer: none, because {[], Snhoc} is COMPLETE

Pattern synonyms
= Just needs some footwork when coming up with uncovered
sefts.
= E.g. what values are expressed by
A={x:[Int] | x#]] x#Snoc, x+1}
® Answer: hone, because {[], Shoc} is COMPLETE

GADTs

= A contains type equalities as well as ferm equalities

data T a where
TBool :: T Bool

f :: a->Ta ->a
f xy | TBool <- y, True <- x = ..

" A={xa, .7 a|TBooly, a~Boollrue—x}

m Re-uses GHC's type-constraint solver

Long distance information: easy!

data Grade = A | B | C

:: Bool -> Grade -> blah

. (case g of Simply start this case

B -> True from the enclosing |
C -> False) ..

We get to this RHS with

Conclusion

= A long, long road

= A satisfying conclusion
® Theory is a lot simpler
m Code is a lot simpler
= And a lot shorter
= And runs faster
= And nails many bugs

