PATTERN MATCH WARNINGS How hard can it be?

Simon Peyton Jones
Microsoft Research
With lots of help from
Ryan Scott (Indiana) and Sebastian Graf (Karlsruhe)
October 2019

Programming language research

Excellent research plan:

- Looks hard
- Think think think
- Is easy

Programming language research

Excellent research plan:

- Looks hard
- Think think think
- Is easy

Less excellent plan

- Looks easy
- Think think think
- Is hard


```
isJust :: Maybe a -> Bool
isJust Nothing = False
```

Not OK!

```
ghci> isJust (Just True)
*** Exception: <interactive>:16:5-16:
Non-exhaustive patterns in function isJust
```

Runtime error (bad)

```
isJust :: Maybe a -> Bool
isJust Nothing = False
```

Compile time error (good)

- Task: produce good compile time warnings for
 - Missing equations

```
isJust :: Maybe a -> Bool
isJust Nothing = False
```

Redundant equations

```
isJust :: Maybe a -> Bool
isJust Nothing = False
isJust (Just _) = True
isJust Nothing = False
```

- First reaction: easy peasy

Easy peasy?

Around 80 tickets

Of which 24 are open

Interactions between arguments

Interactions: not so easy

```
berry :: Bool -> Bool -> Bool -> Int
berry True False _ = 1
berry False _ True = 3
berry _ True False = 2
```

Which cases (if any) are not matched?

Interactions: not so easy

```
berry :: Bool -> Bool -> Bool -> Int
berry True False _ = 1
berry False _ True = 2
berry _ True False = 3
```

Which cases (if any) are not matched?

```
berry True True True = ...
berry False False False = ...
```

Laziness

```
f :: Bool -> Bool -> Int
f _ False = 1
f True False = 2 -- Is this equation redundant?
f _ = 3
```

```
ghci> f (error "urk") True
```

- With equation 2: get "exception: Urk"
- Without equation 2: get 3

So equation 2 is not redundant (cannot be omitted)

ghci> f (error "urk") True

So equation 2 is not redundant (cannot be omitted)

- With equation 2: get "exception: Urk"
- Without equation 2: get 3
- But can we ever return 2? No!

And yet its RHS is inaccessible

```
<interactive>:1:22: warning: [-Woverlapping-patterns]
    Pattern match has inaccessible right hand side
    In an equation for `f': f True False = ...
```

But can we ever return 2? No!

And yet its RHS is inaccessible

Bang patterns and strict data constructors

Inhabitation

data Void

-- No data constructors

The only inhabitant of Void is bottom

```
h :: Int -> Void
h x = h x
```

```
f :: Void -> Bool
f _ = True

g1 = f (error "urk") -- This call is well typed
g2 = f (h 3) -- This is well typed too
```

Inhabitation and strict constructors

```
data Void -- No data constructors

data SMaybe a = SNothing | SJust !a -- Strict Maybe
```

```
f :: SMaybe Void -> Int
f SNothing = 1
f (SJust _) = 2 -- Is this redundant?
```

Inhabitation and strict constructors

```
data Void -- No data constructors

data SMaybe a = SNothing | SJust !a -- Strict Maybe
```

```
f :: SMaybe Void -> Int
f SNothing = 1
<del>f (SJust _) = 2</del> -- Redundant!
```

- The only inhabitants of (SMaybe Void) are
 - 1. SNothing
 - 2. bottom
- The first equation matches (1) and diverges on (2)
- So the second equation is redundant

Inhabitation and bang patterns

```
data Void -- No data constructors data Maybe a = Nothing | Just a
```

```
f :: Maybe Void -> Int
f Nothing = 1
f (Just !_) = 2 -- Is this redundant?
```

- The only inhabitants of (Maybe Void) are
 - 1. Nothing
 - 2. Just bottom
- The second equation diverges on (2)
- So the second equation is is not redundant, but has inaccessible RHS

Guards and view patterns

Guards

- Clearly undecidable in general
- But we want to do a good job in special cases
- E.g. otherwise/True always succeeds

Pattern guards

Very like

Pattern guards

Here we might reasonably hope that GHC will see that these equations are exhaustive

Mixing pattern matching and pattern guards

```
get :: Maybe Int -> Int

get Nothing = 0

Get x | Just y <- x = y

Ordinary pattern match
```

Again, exhaustive...

Pattern guard

View patterns (expr -> pat)

```
last :: [a] -> Maybe a
last (reverse -> y:_) = Just y
last (reverse -> []) = Nothing
```

Again, we might reasonably hope that GHC will see that these equations are exhaustive

Long distance information

Long distance information

```
data Grade = A | B | C

f :: Grade -> blah

f A = ...
f g = ... (case g of

B -> True

C -> False) ...
```

Are we having fun yet?

Multiple arguments

Laziness

Inhabitation, strict data constructors

Bang patterns

Guards and view patterns

Long distance interactions

GADTs: double the fun

GADTS

```
data T a where
   TInt :: Int -> T Int
   TBool :: Bool -> T Bool
```

```
getInt :: T Int -> Int
getInt (TInt i) = i
-- Are any equations missing?
```

What about: getInt (TBool b)?

GADTS

```
data T a where
   TInt :: Int -> T Int
   TBool :: Bool -> T Bool
```

```
getInt :: T Int -> Int
getInt (TInt i) = i
-- Are any equations missing? No!!
```

No: this single equation is exhaustive

GADTs and long distance information

```
data T a where
   TInt :: Int -> T Int
   TBool :: Bool -> T Bool
```

This case is exhaustive

```
foo :: T a -> T a -> T a

foo (TInt i1) y = ...(case y of TInt i2 -> ...) ...

foo (TBool b1) y = ...(case y of TBool b2 -> ...) ...
```

GADTs and multiple arguments

```
data T a where

TInt :: Int -> T Int

TBool :: Bool -> T Bool

UBool :: Bool -> U Bool
```

```
foo :: T a -> U a -> Bool
foo (TBool b1) (UBool b2) = b1 || b2
-- Are any equations missing?
```

GADTs and multiple arguments

```
data T a where

TInt :: Int -> T Int

TBool :: Bool -> T Bool

data U a where

UChar :: Char -> U Char

UBool :: Bool -> U Bool
```

```
foo :: T a -> U a -> Bool
foo (TBool b1) (UBool b2) = b1 || b2
-- Are any equations missing? Yes!
```

- What about: foo (TInt i1) (error "urk")?
- Yikes! This is well typed; and fails to match the first eqn

GADTs and multiple arguments

```
data T a where
   TInt :: Int -> T Int
   TBool :: Bool -> T Bool
```

```
data U a where
   UChar :: Char -> U Char
   UBool :: Bool -> U Bool
```

```
foo :: T a -> U a -> Bool

foo (TBool b1) (UBool b2) = b1 || b2

foo (TInt _) = True
```

or...

GADTs and multiple arguments

```
data T a where

TInt :: Int -> T Int

TBool :: Bool -> T Bool
```

```
data U a where
   UChar :: Char -> U Char
   UBool :: Bool -> U Bool
```

```
foo :: T a -> U a -> Bool
foo (TBool b1) (UBool b2) = b1 || b2
foo (TInt _) y = case y of { }
```

- {-# LANGUAGE EmptyCase #-}
- The empty case is strict, so will force y.
- But we should check that the case y of {} is exhaustive.. long distance.

Pattern synonyms

Pattern synonyms

```
pattern Snoc xs x <- (reverse -> (x:xs))
{-# COMPLETE Snoc, [] #-}

last :: [a] -> Maybe a

last [] = Nothing
last (Snoc xs x) = Just x
Asserts that {Snoc,[]}

covers all values
```

These equations are complete

Panic! My head just exploded

The answer: ICFP 2015

GADTs Meet Their Match:

Pattern-Matching Warnings That Account for GADTs, Guards, and Laziness Dimitrios Vytiniotis

Georgios Karachalias Ghent University, Belgium georgios.karachalias@ugent.be

KU Leuven, Belgium tom.schrijvers@cs.kuleuven.be

Simon Peyton Jones Microsoft Research Cambridge, UK {dimitris,simonpj}@microsoft.com

$patVectProc(\vec{p}, S) = \langle C, U, D \rangle$ $C = \{ w \mid v \in S, w \in \mathcal{C} \ \vec{p} \ v, \vdash_{SAT} w \}$ $patVectProc(\vec{p}, S) = \langle C, U, D \rangle$ where $U = \{w \mid v \in S, w \in \mathcal{U} \vec{p} v, \vdash_{SAT} w\}$ $D = \{ w \mid v \in S, w \in \mathcal{D} \ \vec{p} \ v, \vdash_{SAT} w \}$ $\mathcal{C} \vec{p} v = C$ (always empty or singleton set) [CNIL] $(\Gamma \vdash \epsilon \triangleright \Delta)$ $= \{ \Gamma \vdash \epsilon \triangleright \Delta \}$ CE $map\ (kcon\ K_i)\ (\mathcal{C}\ (\vec{p}\ \vec{q})\ (\Gamma \vdash \vec{u}\ \vec{w} \rhd \Delta)) \ \text{if}\ K_i = K_i$ $\mathcal{C} ((K_i \vec{p}) \vec{q}) (\Gamma \vdash (K_i \vec{u}) \vec{w} \triangleright \Delta) =$ [CCONCON] if $K_i \neq K_i$ [CCON VAR] $\mathcal{C} ((K_i \vec{p}) \vec{q}) (\Gamma \vdash x \vec{u} \triangleright \Delta)$ $= \mathcal{C}((K_i \vec{p}) \vec{q}) (\Gamma' \vdash (K_i \vec{y}) \vec{u} \triangleright \Delta')$ where $\vec{y} \# \Gamma$ $\vec{a} \# \Gamma$ $(x:\tau_x) \in \Gamma$ $K_i :: \forall \vec{a}.Q \Rightarrow \vec{\tau} \rightarrow \tau$ $\Gamma' = \Gamma, \vec{a}, \vec{y}:\vec{\tau}$ $\Delta' = \Delta \cup Q \cup \tau \sim \tau_x \cup x \approx K_i \vec{y}$ [CVAR] $= map (ucon u) (\mathcal{C}(\vec{p}) (\Gamma, x:\tau \vdash \vec{u} \triangleright \Delta \cup x \approx u))$ where $x \# \Gamma$ $\Gamma \vdash u : \tau$ $\mathcal{C}(x\vec{p})$ $(\Gamma \vdash u \vec{u} \triangleright \Delta)$ $\mathcal{C} ((p \leftarrow e) \vec{p}) (\Gamma \vdash \vec{u} \triangleright \Delta)$ $= map \ tail \ (\mathcal{C} \ (p \ \vec{p}) \ (\Gamma, y : \tau \vdash y \ \vec{u} \rhd \Delta \cup y \approx e))$ where $y\#\Gamma$ $\Gamma \vdash e : \tau$ [CGUARD] $U\vec{p}v = U$ [UNIL] $(\Gamma \vdash \epsilon \triangleright \Delta)$ UE $map\ (kcon\ K_i)\ (\mathcal{U}\ (\vec{p}\ \vec{q})\ (\Gamma \vdash \vec{u}\ \vec{w}\ \triangleright\ \Delta) \ \text{if}\ K_i = K_i$ [UCONCON] $\mathcal{U}((K_i \vec{p}) \vec{q}) \quad (\Gamma \vdash (K_i \vec{u}) \vec{w} \triangleright \Delta) =$ $\{\Gamma \vdash (K_j \vec{u}) \vec{w} \rhd \Delta\}$ if $K_i \neq K_i$ [UCONVAR] $\mathcal{U}((K_i \vec{p}) \vec{q}) \quad (\Gamma \vdash x \vec{u} \rhd \Delta)$ $= \bigcup_{K_i} \mathcal{U} ((K_i \vec{p}) \vec{q}) (\Gamma' \vdash (K_j \vec{y}) \vec{u} \triangleright \Delta')$ where $\vec{y} \# \Gamma$ $\vec{a} \# \Gamma$ $(x:\tau_x) \in \Gamma$ $K_i :: \forall \vec{a}. Q \Rightarrow \vec{\tau} \to \tau$ $\Gamma' = \Gamma, \vec{a}, \vec{y} : \vec{\tau} \quad \Delta' = \Delta \cup Q \cup \tau \sim \tau_x \cup x \approx K_i \vec{y}$ [UVAR] $\mathcal{U}(x\vec{p})$ $(\Gamma \vdash u \vec{u} \triangleright \Delta)$ = exactly like [CVAR], with U instead of C $\mathcal{U} ((p \leftarrow e) \vec{p}) (\Gamma \vdash \vec{u} \triangleright \Delta)$ [UGUARD] = exactly like [CGUARD], with U instead of C $\mathcal{D} \vec{p} v = D$ [DNIL] $(\Gamma \vdash \epsilon \triangleright \Delta)$ DE $= \emptyset$ $map\ (kcon\ K_i)\ (\mathcal{D}\ (\vec{p}\ \vec{q})\ (\Gamma \vdash \vec{u}\ \vec{w} \rhd \Delta) \ \ if\ K_i = K_i$ [DConCon] $\mathcal{D}\left(\left(K_{i}\;\vec{p}\right)\;\vec{q}\right) \quad \left(\Gamma \vdash \left(K_{i}\;\vec{u}\right)\;\vec{w}\;\triangleright\;\Delta\right) =$ if $K_i \neq K_i$ [DCONVAR] $\mathcal{D}((K_i \vec{p}) \vec{q}) \quad (\Gamma \vdash x \vec{u} \triangleright \Delta)$ $= \{ \Gamma \vdash x \, \vec{u} \, \triangleright \, \Delta \cup (x \approx \bot) \} \cup \mathcal{D} ((K_i \, \vec{p}) \, \vec{q}) (\Gamma' \vdash (K_i \, \vec{y}) \, \vec{u} \, \triangleright \Delta')$ where $\vec{y} \# \Gamma$ $\vec{a} \# \Gamma$ $(x:\tau_x) \in \Gamma$ $K_i :: \forall \vec{a}. Q \Rightarrow \vec{\tau} \rightarrow \tau$ $\Gamma' = \Gamma, \vec{a}, \vec{y} : \vec{\tau} \quad \Delta' = \Delta \cup Q \cup \tau \sim \tau_x \cup x \approx K_i \vec{y}$ [DVAR] $(\Gamma \vdash u \vec{u} \rhd \Delta)$ = exactly like [CVAR], with \mathcal{D} instead of \mathcal{C} $\mathcal{D}(x\vec{p})$ $\mathcal{D} ((p \leftarrow e) \vec{p}) (\Gamma \vdash \vec{u} \triangleright \Delta)$ = exactly like [CGUARD], with \mathcal{D} instead of \mathcal{C} [DGUARD]

A big step forward

But

- tricky
- buggy
- slow

Sebastian Graf

A new, simple, modular approach

Two simple ideas

- 1. Desugar all pattern matching to guards
- 2. Collect the available facts into a fact-base A

Desugar pattern matching to guards

```
f (Just (!xs,_)) ys@(y:_) | y > 3 = rhs1
f Nothing zs = rhs2
```

desugars thus:

```
f as ys
  | Just t <- as
  , (xs,v) \leftarrow t
  ,!xs
  , (y:w) \leftarrow ys
  , let b = (y > 3)
  , True <- b
  = rhs1
  | Nothing <- as
  , let zs = ys
  = rhs2
```

Desugar pattern matching to guards

```
f (Just (!xs,_)) ys@(y:_) | y > 3 = rhs1
f Nothing zs = rhs2
```

One-level matching

```
f as ys
  | Just t <- as —
  \rightarrow (xs,v) <- t
  , !xs —
  , (y:w) \leftarrow ys
  , let b = (y > 3)
  , True <- b
  = rhs1
  | Nothing <- as
  , let zs = ys
  = rhs2
```

Matching only on a variable

Simply evaluates xs

Ordinary let-binding

Fix name differences

Desugar pattern matching to guards

This is enough to express

- As-patterns
- View patterns
- Record patterns
- Pattern guards
- Wildcard patterns
- Overloaded literal patterns

- List and tuple patterns
- n+k patterns
- Bang patterns
- Lazy patterns
- Pattern synonyms

After desugaring

NB: this desugaring is for pattern-match overlap checking only, not execution

All values Missing equations Clause 1 Values not covered by clause 1

Clause 2

Values not covered by clauses 1 or 2

Clause 3

Values not covered by clauses 1, 2, or 3

We want to report these - could be a runtime error

All values

Missing equations

Clause 1

Values not covered by clause 1

Clause 2

Values not covered by clauses 1 or 2

Clause 3

Values not covered by clauses 1, 2, or 3

Question

How do we represent a (possibly infinite) set of values?

We want to report these - could be a runtime error

Idea: represent set of values by a factbase Δ

- $\Delta = \{x: Maybe\ Bool\ |\ \epsilon\}$ represents $\{\bot, Nothing, Just\ \bot, Just\ True, Just\ False\}$

Things that are true about every value in the set

Idea: represent set of values by a factbase Δ

- A type describes a set of values
- So does Δ . So Δ is a sort of type.
- Indeed a well-known sort of type: a refinement type

 $\{x:Maybe\ Int\ |\ Just\ (y:Int)\leftarrow x,\ y>3\}$

```
f (Just True) = rhs
```

Desugars to

```
f x \mid Just y \leftarrow x, True \leftarrow y = rhs
```

```
\Delta = \{x: Maybe\ Bool\ |\ \epsilon\}
```


 $f x \mid Just y <-x$, True <-y = rhs

Values not covered by the equation

 $\Delta = \{x: Maybe\ Bool \mid x \neq Just, x \neq \bot\} \cup$ $\{x: Maybe\ Bool \mid Just\ (y: Bool) \leftarrow x,\ y \neq True,\ y \neq \bot\}$

How do we do that in general?

Computing the uncovered set

 $U(\Delta,gs)$ =the subset of Δ whose values do not match the guards gs

$$U(\Delta, []) = \emptyset$$

$$U(\Delta, (Kys \leftarrow x) : gs) = (\Delta + x \neq K, x \neq \bot) \cup U(\Delta + (Kys \leftarrow x), gs)$$

$$U(\Delta, (!x) : gs) = U(\Delta + x \neq \bot, gs)$$

 $U(\Delta, (let x=e) : gs)=U(\Delta+(let x=e), gs)$...and that is all!

```
\Delta = [x:Maybe\ Bool\ |\ \epsilon]
```

Reporting uncovered sets

 $f x \mid Just y <-x, True <-y = rhs$

 $\Delta = \{ x: Maybe Bool \mid x \neq Just, x \neq \bot \} \cup$ $\{ x: Maybe Bool \mid Just (y: Bool) \leftarrow x, y \neq True, y \neq \bot \}$

- Next question: what values satisfy the Δ that falls out of the bottom these are the cases that are not covered
- Empty => equations are exhaustive.

Reporting uncovered sets

 $f x \mid Just y \leftarrow x$, $True \leftarrow y = rhs$


```
\Delta = \{ x: Maybe Bool \mid x \neq Just, x \neq \bot \} \cup 
\{ x: Maybe Bool \mid Just (y: Bool) \leftarrow x, y \neq True, y \neq \bot \}
```

Easy!

- Pick each disjunct in turn $[x:Maybe\ Bool\ |\ \theta]$
- Start from x:Maybe Bool
- Pick a value of x that works for θ
- Repeat

```
\Delta = \{x: Maybe\ Bool\ | x \neq Just, x \neq \bot\} \cup \ldots
```

- Start from x: Maybe Bool
- Pick a value of x that works for $x \neq Just$, $x \neq \bot$
- x = Nothing looks good. (NB in general there may be many.)
- Done

 $\Delta = ... \cup \{x: Maybe Bool \mid Just (y: Bool) \leftarrow x, y \neq True, y \neq \bot\}$

- Start from x: Maybe Bool
- Pick a value of x that works for $Just(y:Bool) \leftarrow x$
- x = Just(y:Bool) looks good.
- Pick a value of y that works for $y \neq True$, $y \neq \bot$
- y = False looks good

Result: x = Just False

```
f (Just True) = rhs

desugars to
```

```
f x \mid Just y \leftarrow x, True \leftarrow y = rhs
```

reports uncovered possibilities

Empty A

```
g (Just y) = y
g Nothing = False
```

desugars to

```
g \times | Just y <- x = y
| Nothing <- x = 0
```


 $\Delta = \{x: Maybe\ Bool \mid x \neq Just, x \neq \bot, x \neq Nothing\}$

What values does this
 [∆] represent?

Empty A

```
(Just y) = y
            represents the empty set - no values satisfy it
 Nothing = False
desugars to
                    50 g is exhaustive.
```

What values does this a represent?

 $\Delta = \{x: Maybe\ Bool \mid x \neq Just, x \neq 1, x \neq Nothing\}$

Scaling up to all of Haskell

Redundant/inaccessible equations

- Modifying $U(\Delta, gs)$ a little bit deals with redundant/inaccessible equations
- Pattern synonyms: some footwork when coming up with uncovered sets. E.g. what values are expressed by

```
\Delta = \{x:[Int] \mid x \neq [], x \neq Snoc, x \neq \bot\}
```

Answer: none, because {[], Snoc} is COMPLETE

Pattern synonyms

- Just needs some footwork when coming up with uncovered sets.
- E.g. what values are expressed by

```
\Delta = \{x : [Int] \mid x \neq [], x \neq Snoc, x \neq \bot\}
```

Answer: none, because {[], Snoc} is COMPLETE

GADTS

 $lacktriangleq \Delta$ contains type equalities as well as term equalities

```
data T a where
   TBool :: T Bool
   ...

f :: a -> T a -> a
f x y | TBool <- y, True <- x = ...</pre>
```

- $\Delta = \{x: a, y: T \mid a \mid TBool \leftarrow y, a \sim Bool, True \leftarrow x\}$
- Re-uses GHC's type-constraint solver

Long distance information: easy!

We get to this RHS with

 $\Delta = \{b: Bool, g: Grade \mid g \neq A, True \leftarrow b\}$

Conclusion

- A long, long road
- A satisfying conclusion
 - Theory is a lot simpler
 - Code is a lot simpler
 - And a lot shorter
 - And runs faster
 - And nails many bugs

