Iy,

P e % s .
BTSN P e S

- - g

Kenji Rikitake
17-MAY-2019

Code Beam STO 2019
Stockholm, Sweden
@jj1bdx

#CodeBEAMSTO 2019 / Keniji Rikitake

Programming paradigm?
What is that?

s It about a programming paradise?

#CodeBEAMSTO 2019 / Keniji Rikitake

Paradigm = pattern + worldview *

e A typical example or pattern of something; a model

A worldview underlying the theories and methodology of a
particular scientific subject

! New Oxford American Dictionary, macOS 10.14.4

#CodeBEAMSTO 2019 / Keniji Rikitake

Programming paradigm, shown in Wikipedia

Programming paradigms are a way to classify programming
languages based on their features.

— Wikipedia

#CodeBEAMSTO 2019 / Keniji Rikitake

https://en.wikipedia.org/wiki/Programming_paradigm

Languages -> paradigms -> concepts

e Many languages belong to one paradigm
e A languages may have many paradigms available

e A paradigm may have many concepts

Peter Van Roy states there are 27 different programming paradigms *

2 Peter Van Roy: Programming Paradigms for Dummies: What Every Programmer Should Know, 2009, Section 2

#CodeBEAMSTO 2019 / Keniji Rikitake 6

https://www.info.ucl.ac.be/~pvr/paradigms.html

Programming paradigm:
Language patterns, worldview, and features
Simplified characteristics of the features

Design philosophy

Then what is the BEAM
Programming Paradigm?

The philosophy of the BEAM
languages/systems:

#CodeBEAMSTO 2019 / Keniji Rikitake 9

Lagom: not too much, not too little, just right

Lagom ar bast
Just the right amount is best / enough is as good as a feast °

3Wikitionary entry of "Lagom &r bast"

#CodeBEAMSTO 2019 / Keniji Rikitake 10

https://en.wiktionary.org/w/index.php?title=lagom_%C3%A4r_b%C3%A4st&oldid=44679439

#CodeBEAMSTO 2019 / Keniji Ri

Lagom in philosophy
thjE / Zhongyong, Chu-yaw

Confucianism: Doctrine of the Mean

HeootNg / mesotes

Aristotle: Golden Mean

kitake

Quote from Programming Erlang *

Don’t Create Too Many Processes

Remember that pmap(F, L) Creates 1ength(n) parallel process-
es. If . 1s very large, you will create a lot of processes. The
best thing to do 1s create a lagom number of processes. Erlang
comes from Sweden, and the word lagom loosely translated
means “not too few, not too many, just about right.” Some say
that this summarizes the Swedish character.

4 Joe Armstrong, "Programming Erlang", Second Edition, Pragmatic Bookshelf, 2013, Section 26.3, "Parallelizing
Sequential Code"

#CodeBEAMSTO 2019 / Keniji Rikitake

12

https://pragprog.com/book/jaerlang2/programming-erlang

Computer is as greedy as people: anti-lagom

e People want fast actions: more speed in less time

e Speed-first programming: cutting corners, less secure
 People want more features (really?)

e Feature bloat: bloatware, software inefficiency

e Less stable, safe, and secure software

#CodeBEAMSTO 2019 / Keniji Rikitake

13

Lagom: accuracy transcends speed

e Safety transcends speed
e Simplicity transcends rich features
e Stability transcends convenience

... these targets are more easily actualized by thinking a bit about
how lagom your software is

... and these are the phisolophy of the BEAM programming paradigm

#CodeBEAMSTO 2019 / Keniji Rikitake

14

Erlang's programming paradigms °

e Functional programming
e Message-passing concurrent programming
e Multi-agent programming (Erlang processes)

e Some shared states (Process dictionaries, ETS, Mnesia)

> Peter Van Roy: Programming Paradigms for Dummies: What Every Programmer Should Know, 2009, Figure 2
(Taxonomy of programming paradigms) and Table 1 (Layered structure of a definitive programming language)

#CodeBEAMSTO 2019 / Keniji Rikitake

15

https://www.info.ucl.ac.be/~pvr/paradigms.html

A hidden BEAM programming paradigm and
design: safety first, speed second °

e Strong enforcement of immutability
e deep-copied variables, no references

e ... Programmers still can write dangerous code if needed

® Kenji Rikitake, Erlang and Elixir Fest 2018 Keynote Presentation, 16-JUN-2018, Tokyo, Japan

#CodeBEAMSTO 2019 / Keniji Rikitake

16

https://speakerdeck.com/jj1bdx/erlang-and-elixir-fest-2018-keynote

Immutability ’

e Once the value is stored, it cannot be changed

 No mutable variables on either Erlang or Elixir, unless explicitly
stated as an external function (e.g., ETS) or processes

 |Immutability makes debugging easier because all stored values of
created objects during actions remain untouched

7 José Valim, Comparing Elixir and Erlang variables, Plataformatec blog, January 12, 2016

#CodeBEAMSTO 2019 / Keniji Rikitake 17

http://blog.plataformatec.com.br/2016/01/comparing-elixir-and-erlang-variables/

Variable binding strategies between Erlang
and Elixir differs with each other

 Erlang: single binding only, with implicit pattern matching

e Elixir: multiple binding allowed as default, pattern matching
enforceable with the pin () operator

#CodeBEAMSTO 2019 / Keniji Rikitake 18

Erlang enforces single binding variables

1> A = 10.
10
2> A = 0.

** exception error: no match of right hand side value 20
% Each variable can only be bound *once and only once¥*
5> B =111, 2].

[1,2]

4> [, X] = B, X.

2 % Bindings are equivalent to the pattern matching

#CodeBEAMSTO 2019 / Keniji Rikitake 19

Advantages of Erlang's single-binding variables

e Debugging gets easier: once a variable is bound, it doesn't
change until the function exits

e The meaning attached to every variable must be clearly defined,
because no shared meaning is allowed

#CodeBEAMSTO 2019 / Keniji Rikitake 20

Erlang's ambiguity on case expression (1)

case an_expr() of
% S 1s bound to an_expr()'s result
{ok, S} -> do_when_matched();

-> do_when_unmatched()

end

#CodeBEAMSTO 2019 / Keniji Rikitake

21

Erlang's ambiguity on case expression (2)

S = something, % newly added

case an_expr() of
% an_expr()'s result is pattern-matched implicitly
% to the result of previous S instead
{ok, S} -> do_when_matched();

-> do_when_unmatched()

end

#CodeBEAMSTO 2019 / Keniji Rikitake

22

Elixir allows variable rebinding ®

10

iex(1)> a
10
iex(2)> a = 20

20 # a 1s rebound

pin operator forces pattern matching without rebinding

iex(5)> Na = 40
*¥%¥ (MatchError) no match of right hand side value: 40

8 Stack Overflow: What is the “pin” operator for, and are Elixir variables mutable?

#CodeBEAMSTO 2019 / Keniji Rikitake

23

https://stackoverflow.com/a/27975233/417862

Advantages of Elixir's multiple binding

e Aligning well with the default behavior of many other languages

e Pattern-matching is explicitly controllable to remove ambiguity,
e.g. for case expressions

#CodeBEAMSTO 2019 / Keniji Rikitake

yZ

Elixir on case expression (1)

S = :a _previous value

case an_expr() do
s 1s bound to an _expr()'s result anyway
{:0k, s} -> do_when_matched()

-> do_when_unmatched()

end

#CodeBEAMSTO 2019 / Keniji Rikitake

25

Elixir on case expression (2)

S = :a _previous value
case an_expr() do
an_expr()'s result 1is explicitly pattern-matched
with the content of s (:a previous value)
by the pin operator before s
ok, ANs} -> do_when_matched()
-> do_when_unmatched()

~ H I

#CodeBEAMSTO 2019 / Keniji Rikitake 26

Erlang's deep-copied variables

> A = , B = [A, 1.
[19,50]

> f(A), A. % f(A): unbind A
* 1: variable 'A' 1s unbound

> B.

[10,307 # old A remains in B

#CodeBEAMSTO 2019 / Keniji Rikitake

27

Elixir's deep-copied variables

iex(1)> a = ;, b = [a,]
[19, 50]
iex(2)> a = ; [a, D]

[20, [10, 11 # old a remains in b

#CodeBEAMSTO 2019 / Keniji Rikitake

28

Advantage of deep-copied variables

 |mmutable, by always creating new object bodies for copying

e The same copy semantics is applied regardless of the data types,
especially between simple (integers, atoms) and structured (lists,
tuples, maps) types

#CodeBEAMSTO 2019 / Keniji Rikitake 29

Disadvantages of shared-nothing / deep-
copied variables

e Slow: all assignments imply deep copying
e Much more memory space: you cannot implicitly share

... Are they really disadvantages at the age of abundant processing
power and memory space?

#CodeBEAMSTO 2019 / Keniji Rikitake

30

Many of programming languages
work In different ways as default

Variables are not necessarily immutable
Copy semantics differ between different data types

#CodeBEAMSTO 2019 / Keniji Rikitake

LISP is not necessarily immutable, even it's a
functional language ’

(defparameter *some-list* (list 'one 'two 'three 'four))
(rplaca *some-list* 'uno)

(rplacd (lLast *some-list*) 'mot-nil)

; result by CLISP 2.49

(ONE TWO THREE FOUR) ; original

(UNO TwWO THREE FOUR) ; head replaced

(UNO TWO THREE FOUR . NOT-NIL) ; tail replaced

? Source code example from Hyperspec Web site, modified by Kenji Rikitake, run on Wandbox with CLISP 2.49

#CodeBEAMSTO 2019 / Keniji Rikitake KYJ

http://clhs.lisp.se/Body/f_rplaca.htm
https://wandbox.org/#
https://clisp.sourceforge.io/

JavaScript has a complicated copy semantics

// var a = {first: 1, second: 2}

// b =a // only sharing *references*

{ first: 1, second: 2 }

// a.second = 3

3

// b // changing a also changes b

{ first: 1, second: 3 }

// b == { first: 1, second: 3 }

false // WHY?

// The right-hand side is a *constructor¥*

#CodeBEAMSTO 2019 / Keniji Rikitake 33

C# also has a complicated copy semantics

Type int is value copied, List is reference copied (why??)

using System.Collections.Generic;

int 1 = ; List<int> a = new List<int>(){10, };
MutableMethod(i, a);
void int 1, List<int> a) {

i = ; a.Add(30); }

Result: 1 = 100, a = {10, 20, 30}

#CodeBEAMSTO 2019 / Keniji Rikitake

34

C++: can you tell the difference?

double func(std: :vector<double> x);

double func(std::vector<double> &v); // with reference
double func(std::unique ptr<std::vector<double>> u);
double func(std::shared ptr<std::vector<double>> s);

std: :vector<double> vy = Xx;

std: :vector<double> &w = v; // with reference

std::unique ptr<std::vector<double>> ul2 = std::move(u);

// You cannot -> std::unique ptr<std::vector<double>> u3 = u;

... actually, I'm not sure | can accurately explain the difference.

#CodeBEAMSTO 2019 / Keniji Rikitake 35

These languages perplex me by: *°

e Different actions for different data types

e Constructors (and destructors)

e Copy semantics (C#: value type, reference type)
e Shallow-copied objects = no immutability

e Shared state and references as default

19Rikitake, K.: Shared Nothing Secure Programming in Erlang/OTP, IEICE Technical Report IA2014-11/1CS52014-11,
Vol. 114, No. 70, pp. 55--60 (2014). (Slide PDF)

#CodeBEAMSTO 2019 / Keniji Rikitake 36

https://speakerdeck.com/jj1bdx/otp

Design of these languages

e Avoid object copying

e Creation of objects need explicit actions

e Explicit use of reference

e Object isolation is the programmer's responsibility

... mostly for speed and cutting corners

#CodeBEAMSTO 2019 / Keniji Rikitake

37

What BEAM languages provide

e Same actions for all data types

 No need for explicit constructors/destructors
e Single copy semantics (deep copy)

e Deep copied objects = immutability

e No shared state, no reference, as default

#CodeBEAMSTO 2019 / Keniji Rikitake

38

Design of BEAM languages

e Deep-copying as default
e New objects are always created by assignments
e Prohibit use of reference
 Object isolation is the language's responsibility

... for security first, and lagom speed second

#CodeBEAMSTO 2019 / Keniji Rikitake

39

The BEAM Programming Paradigm difference

from the popularly-used shared-state object-oriented languages:

Choice of default data copying mode

By choosing lagom speed traded in for much more secure programming

#CodeBEAMSTO 2019 / Kenji Rikitake 40

#CodeBEAMSTO 2019 / Keniji Rikitake

Shared storage

of the internal state
(memory, disk, etc.)

Per-node
storage

Per-node
storage

Per-node
storage

Per-node
storage

Per-node
storage

Per-node
storage

Shared storage
of the internal state

VAT 2 S YW =3 =% -
Nh re secure?

Ahich model causes“ bu“

Per-node
storage
#CodeBEAMSTO 2019 / Keniji Rikitake 42

Per-node
storage

Topics excluded from this talk

e BEAM architecture !
e Concurrency models
e Process supervision and signals

e How BEAM languages handle shared states

11 Erik Stemman, The Beam Book

#CodeBEAMSTO 2019 / Kenji Rikitake 43

https://blog.stenmans.org/theBeamBook/

Acknowledgment

This presentation is suppored by
Pepabo R&D Institute, GMO Pepabo, Inc.

Thanks to Code BEAM Crew and Erlang
Solutions!

... and thank you for being here!

ANV TR PR

Pepabo R&D Institute, GMO Pepabo, Inc.

#CodeBEAMSTO 2019 / Keniji Rikitake

Thanks, Joe.

You taught me how to program in the
principle of lagom dr bdst.

You helped me finding out a new hope for
programming, after | got lost in the C
header files of ISC BIND 9.4.2 in 2007.

I'm impressed by your hospitality, as well
as your creative mind.

We will remember you.

#CodeBEAMSTO 2019 / Keniji Rikitake

Thank you
Questions?

Photo / graphics credits

e Title: Photo by Masayoshi Yamase on Unsplash
e Lagom: Photo by Jen P. on Unsplash

 Programming Erlang quote: from Pragmatic Bookshelf's EPUB ebook rendered by iBooks
on macOS 10.14.4, underline added by Kenji Rikitake

e Joe Armstrong: Photo by Brian L. Troutwine, edited by Keniji Rikitake, licensed CC BY-NC
4.0 International

e Pepabo R&D Institute Logo: GMO Pepabo, Inc.
 Thank you page: Photo by Raphael Andres on Unsplash
e All the other photos: Kenji Rikitake

#CodeBEAMSTO 2019 / Keniji Rikitake 47

https://unsplash.com/photos/peAbdH4O8GM
https://unsplash.com/@myana
https://unsplash.com/photos/_EiuAQtkyKo
https://unsplash.com/@talesbyjen
https://www.dropbox.com/sh/18w4l9vbmgu98ov/AAAiTRknnIBbJAOEmn72INRfa?dl=0
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://unsplash.com/photos/3cwvFD-YPtk
https://unsplash.com/@raphaeldas

