
GOING BEYOND THE FULLY CONNECTED
MESH

ERLANG DISTRIBUTION

• Computation at the Edge

• CRDTs

• Gossip protocols

WHAT IS IT

ERLANG DISTRIBUTION

WHAT IS IT

ERLANG DISTRIBUTION

• Transparent distribution protocol

• Send Messages

• Link Processes

• Monitor Processes

ERLANG DISTRIBUTION

PROBLEMS

• Default is fully connected mesh

• Fully connected mesh doesn’t scale well

• Hidden nodes can help, but is not a solution

• Global process registry requires fully connected mesh

UDP DISTRIBUTION PROTOTYPE

UDP DISTRIBUTION PROTOTYPE

IMPLEMENTATION

• Started out based on our work on working around head-of-line blocking

• Alternative ways to avoid the problem

• Stepping stone towards experience with building multiple distribution
implementations

• Learn how to support less connection oriented ways of implementing
distribution

Custom Distribution Implementation

Kernel

Kernel

gen_tcp_dist

gen_tcp_dist

Acceptor

Acceptor

Controller

Controller

Controller Input

Controller Input

Remote

Remote

listen(Name)

{ok, {ListenSocket, NetAddress, Creation}}

accept(ListenSocket)

spawn

pid()

gen_tcp:accept(ListenSocket)

Idle

alt [Incoming Setup]
connect

spawn

! {accept, self(), Controller, Family, Protocol}

accept_connection(AcceptPid, Controller, MyNode, Allowed, SetupTime)

spawn

{Kernel, controller, Pid}

{self(), controller}

{AcceptorPid, controller}

dist_util:handshake_other_started(HSData)

Handshake

Handshake complete

spawn

[Outgoing Setup]
"setup(Node, Type, MyNode, LongOrShortNames, SetupTime)"

spawn

connect

spawn

dist_util:handshake_we_started(HSData)

Handshake

Handshake complete

spawn

Connected

alt [Incoming Data]
Data

erlang:dist_ctrl_put_data(DHandle, Data)
[Outgoing Data]

dist_data

loop
erlang:dist_ctrl_get_data(DHandle)

Data

send

none

erlang:dist_ctrl_get_data_notification(DHandle)

Uh…

ERLANG VM

UDP DISTRIBUTION PROTOTYPE

THE DISTRIBUTION “STACK”

NETWORK

gen_udp

my_dist

KERNEL

YOUR APPLICATIONS

UDP DISTRIBUTION PROTOTYPE

Node 2Node 1

kernel my_dist kernelmy_dist

UDP DISTRIBUTION PROTOTYPE

Node 2Node 1

kernel my_dist kernelmy_dist

A A

1a: listen

2a: spawn 2b: spawn

1b: listen

UDP DISTRIBUTION PROTOTYPE

Node 2Node 1

kernel my_dist kernelmy_dist

A A

CC

3: ping Node 2

5: "hello"

9: <port>
6: spawn

10: spawn

8: incoming
11: done

4: setup

7: <port>

UDP DISTRIBUTION PROTOTYPE

Node 2Node 1

kernel my_dist kernelmy_dist

A A

CC

I I

12b: handshake13: dist_util handshake12a: handshake

14a: spawn 14b: spawn

UDP DISTRIBUTION PROTOTYPE

Node 2Node 1

kernel my_dist kernelmy_dist

A A

CC

I I

OO16: dist_data 17: send

18: put_data

19: dist_data20: send

21: put_data

15: send request

UDP DISTRIBUTION PROTOTYPE

UDP DISTRIBUTION PROTOTYPE SUMMARY

• One acceptor process per node

• Opens a separate UDP listening port for connection attempts

• Two processes, one input and one output, per node connection

• Could have been one process, but better throughput this way

• (not shown) Erlang Port Mapping Daemon (epmd) used to get the initial
acceptor port to connect to

DEMO

GENERIC DISTRIBUTION BEHAVIOR
NEXT STEPS

GENERIC DISTRIBUTION BEHAVIOR

A DISTRIBUTION BEHAVIOR

• The UDP prototype is quite similar to the TCP example from OTP

• What if we could make a behavior that encapsulates all the complexity of the
current API and process model?

• What would such a behavior look like?

• What are the valid process models?

• Can we combine this with a pluggable transport layer as well?

GENERIC DISTRIBUTION BEHAVIOR

CURRENT STATE

• Custom distribution API exposed in OTP 20

• API is based on the internal implementation for TCP

GENERIC DISTRIBUTION BEHAVIOR

CHALLENGES USING THE LOW-LEVEL OTP API

• Distribution starts early, even before the IO server

• No supervision, errors sometimes hidden or hard to expose

• The API surface is fragmented

• callbacks

• calls

• message passing

• TCP example uses 1 process for listening and 3 processes per node connection

GENERIC DISTRIBUTION BEHAVIOR

PROCESS MODEL

Acceptor

Output

InputTick

Node A

Output

InputTick

Node B
Node N

GENERIC DISTRIBUTION BEHAVIOR

PROCESS MODEL

• Custom transport may require 0-N processes for listening and 0-N processes
for connections

• Unsolved problem: generic callback behavior for running a dynamic number of
processes with unique roles

• Plan of attack: Stick with the 1-3 model for now, experiment with other models
later

GENERIC DISTRIBUTION BEHAVIOR

API PROPOSAL
• Output

• output_init/1

• output_send/2

• Input

• input_init/1

• input_info/2

• Tick

• tick_init/1

• tick_trigger/2

• Acceptor

• acceptor_init/0

• acceptor_info/2

• acceptor_controller_spawned/3

• acceptor_terminate/1

GENERIC DISTRIBUTION BEHAVIOR

HIGH LEVEL APPROACH

NODE
REGISTRY

TRANSPORT

NODE 1

MY DIST

KERNEL

INCOMING

HANDSHAKE

NODE 2

MY DIST

KERNEL

INCOMING

HANDSHAKE

GENERIC DISTRIBUTION BEHAVIOR

HIGH LEVEL APPROACH

NODE
REGISTRY

TRANSPORT

NODE 1

MY DIST

KERNEL

PUT_DATA

DIST_DATA

NODE 2

MY DIST

KERNEL

PUT_DATA

DIST_DATA

GENERIC DISTRIBUTION BEHAVIOR

HIGH LEVEL APPROACH

NODE
REGISTRY

TRANSPORT

NODE 1

MY DIST

KERNEL

PUT_DATA

DIST_DATA

NODE 2

MY DIST

KERNEL

PUT_DATA

DIST_DATA
.

SECURITY
POLICY

USE EXISITING MESSAGING INFRASTRUCTURE:

DISTRIBUTION OVER MQTT PUB SUB

MQTT

MY DIST

KERNEL

.

MQTT

MY DIST

KERNEL

MY DIST

KERNEL

MQTT

HETEROGENOUS NETWORKS
HIGH-LEVEL DISTRIBUTION

HETEROGENOUS NETWORKS

FULLY CONNECTED MESH

• Doesn’t scale!

HETEROGENOUS NETWORKS

NORMAL MESH

• Scales!

• But needs routing

HETEROGENOUS NETWORKS

CUSTOM DISTRIBUTION TO THE RESCUE

• Topologies can be made transparent to the application layer

• Transports can also be made transparent

• Requirements

• A way to represent “virtual” node connections

• Can be made transparent to the application

ETHERNET TSN
TIME SENSITIVE NETWORKING

ETHERNET TSN

WHAT’S IT ABOUT

• Bounded transmission latency

• Low transmission latency

• Reliable delivery of Ethernet packets

+ HARD REALTIME ERLANG
PROCESSES

=
DISTRIBUTED HARD REALTIME

APPLICATIONS

Time Synchronisation

IEEE802.1AS gPTP

IEEE802.1AS REV

Transport Stream and Control

IEEE1722 AVTP IEEE1722.1 AVDECC

Fault Tolerance

IEEE802.1CB
Frame Replication and

Elimination for Reliability

IEEE802.1Qca
Path Control and reservation for

redundancy

IEEE802.1Qci
Per Stream Filtering and Policing

Scheduling

IEEE802.1Qav
FQTSS (CBS)

IEEE802.1Qch
Cyclic queueing and forwarding

IEEE802.1Qbv
Enhancements for Scheduled

Traffic

IEEE802.1Qcr
Asynchronous Traffic Shaping

Preemption

IEEE802.1Qbu
Frame Preemption

IEEE802.1Qbr
Interspresing Express

Traffic

IEEE802.1Qbv
Enhancements for Scheduled

Traffic

Resource Management

IEEE802.1Qat SRP

IEEE802.1Qcc
SRP enhancement and

performance improvement

AVB Protocol

Newly Developed
for TSN

ETHERNET TSN

IEEE 802.1QBV

t

VLAN PRIO

Cycle N Cycle N+1

3 {7,6,5,4,2,1,0} 3 {7,6,5,4,2,1,0}

ETHERNET TSN

IEEE 802.1QBV

t

VLAN PRIO

Cycle N Cycle N+1

3 {7,6,5,4,2,1,0} 3 {7,6,5,4,2,1,0}

PACKET

⚡

ETHERNET TSN

IEEE 802.1QBV

t
Cycle N Cycle N+1

3 {7,6,5,4,2,1,0}

GUARD BAND

3 {7,6,5,4,2,1,0}

GUARD BAND

SUMMARY
RESULTS & FUTURE WORK

SUMMARY

RESULTS & CURRENT STATE

• Generic distribution behavior

• WIP

• Multiple API alternatives

• TSN

• Implementing a TSN Switch with Shortest-Path-Bridging

• Using Erlang for the control plane

SUMMARY

FUTURE WORK

• Erlang distribution

• Connection oriented UDP

• QUIC

• MQTT prototype

• „Virtual node connections“

• Industrial networking

• Prototype UDP over TSN

• Implement real-time control
prototypes

• 696 Mhz - Faster CPU

• 128 Mb RAM - Twice the memory

• Wi-Fi and Ethernet

• Bare-metal Erlang

• Elixir & Nerves

• SoM module

www.grisp.org

Kickstarer funded!

pre-order at

http://www.grisp.org

THANK YOU!
QUESTIONS?

www.stritzinger.com

www.grisp.org @grisporg@peerstr

http://www.stritzinger.com
http://www.grisp.org

