Metaprogramming +
DSL Design
in Elixir

by Adi lyengar

About Me

\ 22K 2 25 2 2

Adi lyengar
€ GitHub: thebugcatcher
€ Twitter: adityaziyengar
Pronouns: He/Him
Senior Software Engineer (Elixir, 5+ years)
Loves catching bugs (software bugs)
¥ 70D
@ Elixir
@) Theoretical Physics

Ovutline

A2 2 2

What is Metaprogramming
When to use Metaprogramming
Metaprogramming in Elixir
Build a DSL in Elixir

Questions

Metaprogramming: What is it?

Code that writes code! Example: Phoenix Router Pipeline

A program is a metaprogram if it: pipeline
- Generates Code plug

end
=> Analyzes other code

2 Stores information about other code scope "/api", App

pipes_through [:api

=>» Injects behavior into other code

e

=> Treats other code as arguments or data get "/ ApiContre

The language used to metaprogram is called the metalanguage. ﬁvgd

Elixir's metalanguage is Elixir itself.. [Reflectivity |

Metaprogramming: Pros and Cons

Example: Phoenix Router Pipeline

Pros:
=>» Hides complexity of the implementation pipeline
- Increases developer productivity plug

end
=» Automates and Standardizes tedious boilerplate code

scope "/api", App

pipes_through [:api

Cons:

e

=> Decreases transparency get i/ ApiContrc

=>» Increases overall code complexity ﬁ'?d

Metaprogramming: When to use it?

Use metaprogramming only when:

= You have exhausted all other options &
You have minimized the “meta” code (Separate interface from implementation)
You have maximized its determinism via thorough unit and integration testing
You have maximized its inspectability; The code should be debuggable

The requirements for the DSL are less volatile; Less maintenance

L N JH R

The cost of failure is manageable

Metaprogramming isn't evil, but it needs to be used thoughtfully.

Metaprogramming in Elixir

Three pillars of Metaprogramming in Elixir:

=> Elixir representation of the Abstract Syntax Tree
€ quoted expressions

= Code/Behavior injection
€ macros

= Compile-time callbacks

® obefore_compile, @after_compile and
@on_definition

Quoted Expressions

Elixir representation of the AST

quote/2 converts a block of code in Elixir to
its AST representation

3 Element Tuple:

= Function

= Metadata iex> quote do:

{:+, [con

= Arguments

Quoted Expressions (AST)

Code.eval_quoted/3

Code.eval_quoted/3 can evaluate a quoted expression using a set of
variable bindings and an environment.

It returns the final result with variable bindings after the evaluation.

iex> expr = quote do: 1 +

iex> C nur_,.eval_mmxpr

{3, [1}

Merging two quoted expressions

You can manually merge two quoted expressions by wrapping them in
a 3 Element tuple with .__block__ as the function.

iex> exprl = quote do: 1 + a
iex> expr2 = quote do: a = 2

iex> expr = {: _block , [] [expr2, exprill]}

iex> Code.eval [N (expr)
{3, [{{nwi Lr—"c:i»pfmiﬂ}'i m}]}

Hygienic evaluation of quotes

Quoted Expressions are evaluated hygienically.
This means variables don't leak across scopes, in
and out of the quoted expression, upon
evaluation.

So, anything defined inside an evaluated quoted
expression doesn't conflict with the outer
context.

And, anything defined outside the quoted
expression doesn't conflict with the inner context.

varlable a'" does not exist
ror) undefined function a/0

var!/2 and unquote/2

iex> expr = quote do: 1 + var!(a)

To explicitly affect the context beyond the
quoted expression boundary, we can use
varl/2 or unquote/2.

var!. evaluation of the quoted expression.

> expr = quete do: 1 + unquote(a)
v 2%
s,eval_M(expr)

unquote: definition of the quoted expression.

Code Injection (the bad way)

We can use Code.eval_quoted/3 to inject code into a module at the time of its compilation.

defmodule Behavior do
def behavior_ast do
quote do
def hello, do: "world
end
end
end

defmodule Test do
Code.eval [(Behavior.behavior_ast(), [], __
end

iex> Test.hello
world

Code Injection (the good way)

macro is the correct way of injecting code/behavior into another module at compile-time.

defmodule Behavior do
def behavior_ast do
quote do
def hello, do: "world
end
end
end

defmodule Test do

Code.eval [eY (Behavior.behavior_ast(), [1, __

end

iex> Test.hello
world

defmodule Behavior do
defmacro behavior_ast do
quote do
def hello, do: "world
end
end
end

defmodule Test do
require Behavior
Behavior.behavior_ast
end

iex> Test.hello
world

Code Injection (use keyword)

Elixir has a special macro __using__/1 which can be invoked using the use keyword.

defmodule Behavior do defmodule Behavior do
defmacro behavior_ast do defmacro __using__(¥) do
quote do quote do
def hello, do: "world def hello, do: "world
end end
end end
end end

defmodule Test do defmodule Test do
require E ior use Behavior
Behavior.behavior_ast end

end

. = hell iex> Test.hello
act

iex> Test.hello Norid

world

Compile-time callbacks

Hook into the compilation of a module and change its behavior.

Elixir has 3 compile-time callbacks:
=2 @before_compile
= @after_compile

= @on_definition

@before_compile

=>» Invoked right before a module's bytecode is generated
=>» Takes the environment as the argument
=>» Needs to be defined in a different module

defmodule Behavior do
defmacro __ before_compile _ () do
quote do
def hello, do: "world
end
end

S > end

defmodule Behavior do
defmacro __using__ () do
quote do
def hello, do: "world
end
end
end

defmodule Test do
use Behavior
end

defmodule Test do

@k Behavior
end

iex> Test.hello

‘ iex> Test.hello
world

world

@after_compile

=>» Invoked after a module's bytecode is generated
=>» Takes the environment and bytecode as arguments

=>» Can be defined in the same module itself

defmodule T

def __after_compile__ (
I0.puts "Compiled i

end

@on_definition

=> |Invoked whenever a function/macro is defined in the current module

=>» Takes six arguments.

=>» Needs to be defined in a different module; can only be a function (ho macros allowed)

defmodule OnDef do
def _ on_definition_ (I, &, name, H, &, body) do
I0.puts
Defining a function named #{name
with body:
Macro.to_string(body)

end
end

defmodule Test do

On

def hello, do: I0.puts “"world
end

g a function named hello

I0.puts("world")]

Summary

->

v v vy

V

v

In Elixir, metaprogramming revolves around three constructs: quoted expressions, macros
and compile-time callbacks.

Quoted Expressions are Elixir representation of ASTs which are evaluated hygienically.
To add dynamic behavior to them, use var! (evaluation-time) or unquote (definition-time).
Macros are used to inject behavior using quoted expressions at compile-time.

Compile-time callbacks are used to run tasks (or add behavior) by hooking into the
compile-time of a module.

Metaprogramming should be used carefully, as it makes code more complex.

Use simple metaprogramming to make code digestible. A DSL is a good use case.

Let's build a DSL

defmodule Music do
_ o o use DSL
= Asimple DSL to compose music in Elixir
sequence
= Calls ALSAs aplay command to play a :g:ﬁz e
note note :
note :
=>» Define a sequence of notes. end
sequence :oul
=>» Anote needs to have a class (rest, C, D, E, note :c,
F.), a modifier (sharp or base), octet, enSOte Lgloalal
duration and volume (with defaults).
sequence :final
=>» A sequence can embed notes from other embed_notes :intra
embed_notes :outro
seqguences. end

end

= Very much inspired by the phoenix router
DSL

Things already done

=>» Note module/struct, representing a note to be played, along with defaults.
@ SNote{class: :a, modifier: :base, octet: 4}

=>» NotePlayer module, which calls ALSAs aplay command.
€ Use NotePlayer.play/1 function which takes a ¢Notef }

=>» Unit and Integration Tests for our DSL.
¢ TDD!

=>» Final (super awesome) track using the expected DSL.

€ This will only work once the DSL is done. #Incentive

TODO

= DSL.__using__/1macro
= sequence/2 macro

€ Away to store a list of notes
=» note/2 macro inside sequence/2

€ Addto list of notes under current
sequence

= embed_notes/1 macro inside
sequence/2

€ Addallist of notes from an
existing sequence to current
sequence

€ Track defined sequences
= play/1 function which takes a sequence

€ Use NotePlayerplay/1to play a
list of notes under a sequence

defmodule Music do
use DSL

sequence
note :c
note :c
note :
note :e
end

sequence :ou
note :c, o
note :d, oct
end

sequence :final do
embed_notes :intr
embed_notes :ol
end

Let's Code!

