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What does that mean?
Breaking the monolith...by porting pages piecemeal
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Let’s start searching...







Search suggestions



Seller suggestions



Resource suggestions



JSON returned from autosuggest
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Process to power autosuggest

Built on Phoenix



autosuggest

A standalone service built as a 
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autosuggest

A standalone service built as a 
proof-of-concept for Elixir adoption at 
TPT

Thanks to Samira for owning this project



Now the information retrieval

The search part
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Et cetera. 
...everything 
else :)



Implementing more elixir

A GraphQL API
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graphiql

Search replayer
Built with Elixir 
running Cowboy

Recommendations 
Side-by-side

And lots of 
personalization 
tooling
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graphiql

graphql query 



graphiql

results
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Just with graphiql, search became easier to debug



graphiql

Just with graphiql, search became easier to debug

And also easier to test



test "facet on grade group should return grades in the resultFacets" do

    query = """

    query {

      searchProducts(query: "", limit: 5, facets: ["Grade-Level/1-2"]) {

        resultFacets {

          grades {

            id

          }

        }

      }

    }

    """



    assert {:ok, result} = Poison.Parser.parse(response.body)

    assert Map.has_key?(result, "data")

    assert not Map.has_key?(result, "errors")

    search_results = result["data"]["searchProducts"]

    obs_grades = search_results["resultFacets"]["grades"]

    assert length(obs_grades) == 2

    assert Enum.member?(obs_grades, %{"id" => "Grades_First"})

    assert Enum.member?(obs_grades, %{"id" => "Grades_Second"})

  end
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Testing our Search terms also became easier!

We convert our search string into an AST (abstract syntax tree)



TptApi.SearchText.from_string("this and that")

{:ok, {:ast_and, [ast_word: 'this', ast_word: 'and', ast_word: 'that']}}

Typical unquoted text string



TptApi.SearchText.from_string(~s("this and that"))

{:ok, {:ast_quoted, 'this and that'}}

Quoted string



TptApi.SearchText.from_string("this -that")       

{:ok, {:ast_and, [ast_word: 'this', ast_not: {:ast_word, 'that'}]}}

Advanced negative searching



test "successfully parse nice inputs", %{nice_inputs: inputs} do

  for {input, expected} <- inputs do

    assert {:ok, expected} == TptApi.SearchText.from_string(input)

  end

end

We test a list of different search terms we support



    [...

    {"fractions \"cheese bananas\"", {:ast_and,

        [ast_word: 'fractions', ast_quoted: 'cheese bananas']}},

    {"fractions -\"cheese bananas\"", {:ast_and,

        [ast_word: 'fractions', ast_not: {:ast_quoted, 'cheese bananas'}]}},

    {"fractions \"cheese or bananas\"", {:ast_and,

        [{:ast_word, 'fractions'}, {:ast_quoted, 'cheese or bananas'}]}},

    ...]

That list looks similar to the following
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Search is not easy



Search analytics

Search is not easy
But that’s why we A/B test and look at a lot of data
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Internal eval is important

replays Search or Browse 
graphql queries and gets 
aggregate data



Internal eval is important

Side by Side search 
comparisons for A/B tests



facets

|> Enum.map(&(Task.async(Replayer.Browse, :do_browse, [&1, cfg.a_url_params])))

|> Enum.map(&Task.await/1)

|> update_with_rank()

Example on Replayer of Top 100 Browses



        # Snippet of GraphQL query in Replayer.Browse.do_browse/2
            totalCount,

            results{

              type,

              url,

              name,

              description(maxLength: 300),

              images{large},

              downloads,

              views,

              votes,

              abbreviatedGrades,

              ratings{scoreAverage, count},

              sold,

              price,

              isFree,

              author{id, name, icon{location}}

        # … more code



*WAD: weighted average discount
Full disclosure: the data here does not represent what is in production :)
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Mixing Elixir for tooling

Replaced PHP tooling
Also a great learning project for onboarding

Thanks to Louis for bootstrapping this project



Related searches

An SEO initiative



Related searches

An SEO initiative
Built easily in the new elixir platform



(refresher)

Autosuggest endpoint



(refresher)

Autosuggest endpoint GraphQL API



 defp run_query(path) do

    uri =

      Application.get_env(:tpt_api, :autosuggest_api_root)

      <> "/#{path}"

      |> URI.parse()

    HTTPUtil.get_json!(uri, [], [timeout: @timeout, recv_timeout: 

@timeout])

  end



Now on our Search pages in React
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Elixir Mixed In

● Autosuggest helped push adoption forward
● GraphQL API provided great decoupling benefits
● Having engineers bootstrap Elixir projects provide good learning
● engineering.teacherspayteachers.com



Thank You Code BEAM SF!

@drincruz
https://www.teacherspayteachers.com/Careers


