
Mixing in Elixir to Build Search
Friday, 16 March

Code BEAM SF

Adrian
Software Engineer
Search & Personalization

Building all things search at Teachers Pay Teachers
www.teacherspayteachers.com

● github/twitter: @drincruz
● drincruz.com

We're the World's Most Popular Online Marketplace for Original Educational Resources

Mixing in Elixir

What does that mean?

Mixing in Elixir

What does that mean?
Breaking the monolith...

Mixing in Elixir

What does that mean?
Breaking the monolith...by porting pages piecemeal

Let’s talk about search

Let’s talk about search

Let’s start searching...

Search suggestions

Seller suggestions

Resource suggestions

JSON returned from autosuggest

Process to power autosuggest

Process to power autosuggest

Built on Phoenix

autosuggest

A standalone service built as a
proof-of-concept for Elixir adoption at
TPT

autosuggest

A standalone service built as a
proof-of-concept for Elixir adoption at
TPT

Thanks to Samira for owning this project

Now the information retrieval

The search part

previous way to serve search
(simplified)

previous way to serve search
(simplified)

search

previous way to serve search
(simplified)

search

product

previous way to serve search
(simplified)

search

product

home

previous way to serve search
(simplified)

search

product

home

Et cetera.
...everything
else :)

Implementing more elixir

A GraphQL API

Mixing in GraphQL

Mixing in GraphQL
And then this gave us more tools to debug and analyze search

Mixing in GraphQL
And then this gave us more tools to debug and analyze search

graphiql

Mixing in GraphQL
And then this gave us more tools to debug and analyze search

graphiql

Search replayer
Built with Elixir
running Cowboy

Mixing in GraphQL
And then this gave us more tools to debug and analyze search

graphiql

Search replayer
Built with Elixir
running Cowboy

Recommendations
Side-by-side

Mixing in GraphQL
And then this gave us more tools to debug and analyze search

graphiql

Search replayer
Built with Elixir
running Cowboy

Recommendations
Side-by-side

And lots of
personalization
tooling

graphiql

graphiql

graphql query

graphiql

results

graphiql

Just with graphiql, search became easier to debug

graphiql

Just with graphiql, search became easier to debug

And also easier to test

test "facet on grade group should return grades in the resultFacets" do

 query = """

 query {

 searchProducts(query: "", limit: 5, facets: ["Grade-Level/1-2"]) {

 resultFacets {

 grades {

 id

 }

 }

 }

 }

 """

 assert {:ok, result} = Poison.Parser.parse(response.body)

 assert Map.has_key?(result, "data")

 assert not Map.has_key?(result, "errors")

 search_results = result["data"]["searchProducts"]

 obs_grades = search_results["resultFacets"]["grades"]

 assert length(obs_grades) == 2

 assert Enum.member?(obs_grades, %{"id" => "Grades_First"})

 assert Enum.member?(obs_grades, %{"id" => "Grades_Second"})

 end

Testing our Search terms also became easier!

Testing our Search terms also became easier!

We convert our search string into an AST (abstract syntax tree)

TptApi.SearchText.from_string("this and that")

{:ok, {:ast_and, [ast_word: 'this', ast_word: 'and', ast_word: 'that']}}

Typical unquoted text string

TptApi.SearchText.from_string(~s("this and that"))

{:ok, {:ast_quoted, 'this and that'}}

Quoted string

TptApi.SearchText.from_string("this -that")

{:ok, {:ast_and, [ast_word: 'this', ast_not: {:ast_word, 'that'}]}}

Advanced negative searching

test "successfully parse nice inputs", %{nice_inputs: inputs} do

 for {input, expected} <- inputs do

 assert {:ok, expected} == TptApi.SearchText.from_string(input)

 end

end

We test a list of different search terms we support

 [...

 {"fractions \"cheese bananas\"", {:ast_and,

 [ast_word: 'fractions', ast_quoted: 'cheese bananas']}},

 {"fractions -\"cheese bananas\"", {:ast_and,

 [ast_word: 'fractions', ast_not: {:ast_quoted, 'cheese bananas'}]}},

 {"fractions \"cheese or bananas\"", {:ast_and,

 [{:ast_word, 'fractions'}, {:ast_quoted, 'cheese or bananas'}]}},

 ...]

That list looks similar to the following

Search analytics

Search is not easy

Search analytics

Search is not easy
But that’s why we A/B test and look at a lot of data

Internal eval is important

Internal eval is important

replays Search or Browse
graphql queries and gets
aggregate data

Internal eval is important

Side by Side search
comparisons for A/B tests

facets

|> Enum.map(&(Task.async(Replayer.Browse, :do_browse, [&1, cfg.a_url_params])))

|> Enum.map(&Task.await/1)

|> update_with_rank()

Example on Replayer of Top 100 Browses

 # Snippet of GraphQL query in Replayer.Browse.do_browse/2
 totalCount,

 results{

 type,

 url,

 name,

 description(maxLength: 300),

 images{large},

 downloads,

 views,

 votes,

 abbreviatedGrades,

 ratings{scoreAverage, count},

 sold,

 price,

 isFree,

 author{id, name, icon{location}}

 # … more code

*WAD: weighted average discount
Full disclosure: the data here does not represent what is in production :)

Mixing Elixir for tooling

Replaced PHP tooling

Mixing Elixir for tooling

Replaced PHP tooling
Also a great learning project for onboarding

Mixing Elixir for tooling

Replaced PHP tooling
Also a great learning project for onboarding

Thanks to Louis for bootstrapping this project

Related searches

An SEO initiative

Related searches

An SEO initiative
Built easily in the new elixir platform

(refresher)

Autosuggest endpoint

(refresher)

Autosuggest endpoint GraphQL API

 defp run_query(path) do

 uri =

 Application.get_env(:tpt_api, :autosuggest_api_root)

 <> "/#{path}"

 |> URI.parse()

 HTTPUtil.get_json!(uri, [], [timeout: @timeout, recv_timeout:

@timeout])

 end

Now on our Search pages in React

Elixir Mixed In

Elixir Mixed In

● Autosuggest helped push adoption forward

Elixir Mixed In

● Autosuggest helped push adoption forward
● GraphQL API provided great decoupling benefits

Elixir Mixed In

● Autosuggest helped push adoption forward
● GraphQL API provided great decoupling benefits
● Having engineers bootstrap Elixir projects provide good learning

Elixir Mixed In

● Autosuggest helped push adoption forward
● GraphQL API provided great decoupling benefits
● Having engineers bootstrap Elixir projects provide good learning
● engineering.teacherspayteachers.com

Thank You Code BEAM SF!

@drincruz
https://www.teacherspayteachers.com/Careers

