Running Erlang and Elixir on microcontrollers with

AtomVM

Davide Bettio <davide@uninstall.it>
https://github.com/bettio/AtomVM
#atomvm on https://elixir-lang.slack.com

Code BEAM Lite Italy 2019

mailto:davide@uninstall.it
https://github.com/bettio/AtomVM

About me

Uninstall on IRC/Slack/etc...
Software developer at Ispirata (Padova)

Working on Astarte -
https://github.com/astarte-platform/astarte

Astarte is an Iol platform written in Elixir

C/C++ developer for a while
KDE developer since 2006
Embedded software developer

AtomVM since 2017

https://github.com/astarte-platform/astarte

What is an embedded system?

A system hidden inside a device

Compared to a PC it has constrained resources
Frequently battery powered - sensors

Lot of different kinds of hardware and SDKs

Embedded system with

- CPU running at 120 MHz
- 176 KiB of RAM

- 512 KiB of FLASH

- WiFi connectivity

Embedded systems hierarchy

Cortex-A53/.../A76
64-bit ARM

Cortex-A5/.../A32
32-bit ARM

Cortex-M
32-bit ARM
(Usually no MMU)

Low end microcontrollers

Embedded systems hierarchy

We can identify 2 bigger groups:

- High-end: CPUs with a MMU (and enough memory) so they can
run an unmodified operating system such as Linux

- Low-end: CPUs with no-MMU or little memory, they need some
custom software/OS on it such as uCLinux, FreeRTOS, Contiki,
etc...

High-end systems

SoCs such as BCM2837 (RPi3), i.MX6, SAM9, Ath. AR9331 etc...
Usually > 16 MiB of RAM

Usually > 16 MiB of FLASH

Capable of running an operating system such as Linux

Capable of running BEAM

BeagleBone Black
Runs Linux and BEAM
512 MiB of RAM

- https://nerves-project.org/ | AM335x1GHz ARM Cortex-A8

“Upper low-end” systems

MCUs such as ATSAMV7 (GRIiSP board)...
Usually 16~64 MiB of RAM

Usually 8~64 MiB of FLASH

Capable of running a RTOS (or uCLinux)
Capable of running a patched BEAM

- https://www.grisp.org/ GRiSP board
Runs BEAM on RTEMS

ARM Cortex M7 (no MMU)
Runs at 300 MHz
64 MiB of RAM

Low-end systems

MCUs such as ESP32, STM32, etc...

Usually 128 KiB~16 MiB of RAM

Usually 256 KiB~8 MiB of FLASH

Capable of running a RTOS (such as FreeRTOS)
BEAM does not run here

- https://github.com/bettio/AtomVM =:lraz [poaie

Tensilica Xtensa LX6
Running at 240 MHz
No MMU

520 KiB of RAM

Very low-end systems

MCUs such as ATmega328p, PIC168F4

Usually 8-bit CPUs

Usually < 128 KiB of RAM

Usually < 256 KiB of FLASH p—

They might run a simple scheduler ATmega328p
Runs at 16 MHz
2 KiB of RAM

No reasonable way to run Erlang, most of them can be

programmed in C, some other only in assembly

“Craft and deploy bulletproof embedded software in Elixir”

Regular Erlang/OTP based solution

Runs on top of Linux kernel

Several supported boards

mix tooling: mix nerves.new, mix firmware.burn

X

GRIiSP is a board + a custom software
GRiSP-Base board has an ARM Cortex M7 with 64 MiB of RAM
GRISP software is Erlang/OTP + custom patches + RTEMS

GRISP 2 is under way
The new hardware will have an ARM Cortex-A 1.MX6
The new board Is quite similar to other boards that are used with Linux

AtomVM

Tiny Erlang VM written in C from scratch

It runs on microcontrollers with less than 500 KiB of RAM
Erlang and Elixiron 3 $ hardware

Easily portable to new hardware
Easy to understand
Runs .beam files

BEWARE

Your .beam files will not work out of the box on AtomVM

Your code must be changed to work on a constrained
environment

Some features will never be implemented

Makers are experimenting with alternatives to C/C++

MicroPython/CircuitPython
JerryScript/mJS
elLua

They need rapid prototyping

loT

Interaction with remote services

Need for simple error handling

Need to parse payloads

Binary protocols handling

Connected to a remote broker (usually MQTT)
New challenges: mesh networks, LoORA, etc...
Abstraction

Implementing IoT devices in C is painful

Writing code for an loT device in plain C is a painful experience

Networking is even worse

Asynchronous operations are quite common but hard
Tasks are frequently needed

Turns out to be hard to test and debug

Takes a lot of time

Erlang and Elixir to the rescue

It is not C language

Processes

Easier to implement asynchronous processing
Easier to test and debug

Hardware independent

DSLs in Elixir

Lot of funs

Blinking a LED with Arduino

void setup() {
pinMode (LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
delay(1000);

Blinking a LED with Erlang on AtomVM

-module(blink).
-export([start/0]).

start() ->
GPIO = gpio:open(),
gpio:set_direction(GPIO, 2, output),
loop(GPIO, 0).

loop(GPIO, level) ->
gpio:set_level(GPIO, 2, level),
timer:sleep(1000),
loop(GPIO, 1 - level).

Blinking a LED with Elixir on AtomVM

defmodule Blinker do
def start(gpio, interval_ms) do
gpio_driver = GPIO.open();
GPIO.set_direction(gpio_driver, gpio, :output)

loop(gpio_driver, gpio, interval_ms, 0)
end

def loop(gpio_driver, gpio, interval_ms, level) do
GPIO.set_level(gpio_driver, gpio, level)

:timer.sleep(interval_ms)
loop(gpio_driver, gpio, interval_ms, 1 - level)

end
end

Hello Arduino, can you do this?

defmodule Blink do
def start do
spawn(Blinker, :start, [{:d, 12}, 1000])
spawn(Blinker, :start, [{:d, 13}, 500])
spawn(Blinker, :start, [{:d, 14}, 1500])
spawn(Blinker, :start, [{:d, 15}, 300])

loop()
end

def loop do

loop()
end

end

Bringing up WiFi

-module(setup network).
-export([start/0]).

start() ->
NetworkConfig = [{sta, [
{ssid, "mynetwokid"},
{psk, "mypassword"}
131,

network:setup(NetworkConfig).

Flashing to the real hardware

Code must be compiled using erlc/elixirc

Microcontrollers have no filesystem on their flash
beam files must be packed together to an .avm file

esp32 - $IDF_PATH/components/esptool_py/esptool/esptool.py
--chip esp32 --port /dev/ttyUSBO --baud 115200 --before
default reset --after hard _reset write flash -u --flash _mode
dio --flash_freq 40m --flash_size detect 0x110000

hello world.avm

stm32 -+ st-flash --reset write packed.avm 0x8080000

Supported hardware (ESP32)

1 or 2 cores, 520 KiB of RAM, WiFi, BLE, Ethernet, etc...

Espressif ESP32 Wi-Fi & Bluetooth Microcontroller — Function Block Diagram

N
(R S R R N R S R RO
Radio Bluetooth
Bluetooth ulein‘l)(o Embedded flash memory
Included in ESP32-PICO-D4 system-in-package QFN module
(RF receive] haseband controller
A o S I
' 2 (@ I
Clock generator Peripheral SPI
Wi-Fi Wi-Fi interfaces Serial Peripheral Interface
[RF transmit] baseband MAC
\ il J, 12C 12S
Inter-Integrated Circuit Inter-IC Sound
Cryptographic hardware acceleration Core and memory
UART
B 3 [Secure Digital Input Output] (Universal async. receiver-transmitter
RSA SHA Xtensa LX6 microprocessor
Rivest-Shamir-Adleman FIPS PUB 180-4 32-bit; dual-core or single-core
J ETH
~ Controller Area Network Ethernet MAC
RNG AES ROM SRAM
Random number gen. FIPS PUB 197 Read-only memory Static random-access mem. IR
L) J Infrared Pulse-width modulation
= Temperature sensor Touch sensors
RTC and low BOWES management SUbSVStem [Internal; range of -40°C to 125°C Ten capacitive-sensing inputs
N
PMU _ Ultra-low-power Recovery DAC SAR ADC
Power management unit Co-processor memory) Digital-to-analog converter Successive approx. analog-to-digital conv.
J
e/

Supported hardware (STM32)

ARM based hardware

Wide choice of different models
Lot of dev boards with different peripherals
Well documented

Low power consumption

STM32 F4 Discovery
192 KiB of RAM
15-20 €

STM32 F7 Discovery
340 KiB + 128 MiB of RAM
~50 €

Supported hardware [Your favourite MCU/board herel

Just add needed code to src/platforms
STM32 port is < 500 lines of code
A port must provide code for:

Loading/memory mapping modules from flash
Waiting events and sleeping

Hardware specific features such as GPIOs are implemented as
port drivers

I

How does it work?

A startup module is memory mapped - src/main.c

.beam files are IFF files having some sections
AT8U, CODE, EXPT, LOCT, IMPT, etc...

Code is parsed
A label offsets table is built
A startup function is searched in exported functions table

How does it work?

Code is executed in place -» No JIT, no threaded code
Execution in place does not require additional memory
Just one huge switch that keeps executing BEAM code

{label,4}. while (1) { .

{allocate,1,2}. switch (code[i]) {
{move, {x,1},{y,0}}. case'OP_MOVE: {
{call,1,{f,6}}. int next_off = 1; term src_value;
{move, {x,0},{x,1}}. DECODE_COMPACT_TERM(src_value, code, 1,
{move, {y,0},{x,0}} . . next_off, next_off);
{move, {x,1},{y,0}}. int dreg; uint8_t dreg_type; '
{call,1,{f,6}}. DECODE_DEST_REGISTER(dreg, dreg_type, code, 1i,
{gc_bif, "+, {f,0},1,[{y,0},{x,0}1,{x,0}}. next_off, next_off);
{deallocate,1}. WRITE_REGISTER(dreg_type, dreg, src_value);
return.

NEXT_INSTRUCTION(next_off);

break;

}

How does it work?

Each process has:
A set of X registers
A stack and a set of Y registers pointing to stack slots
A heap

Function arguments are stored on X registers

BEAM assembly is not CPU assembly
e.g. no add, sub, mul = BIFs are used instead

How does it work?
/ Process control block \ Process Memory

Low
heap base |
> Heap Term 0
heap_ptr Heap Term 1
e
Heap Term n
CP

X Registers

X[0]
X[1]
> Y[0]
Y[1]
X[n]
Saved CP

High

How does it work?

Simple copying garbage collector (Cheney’s algorithm)

Garbage collection is triggered by some instructions
allocate, allocate heap, allocate zero, allocate heap zero, test heap, etc...

Same memory layout as the one used on BEAM

How does it work?

All values are tagged

On a 32-bit CPU values bigger than 134217728 are stored on the
heap

28 bits integer value 18] 188 1 1

26 bits atom index (OR[R O 1818 08 815881t

Useful resources

https://happi.github.io/theBeamBook/

Some differences

Optional big integers support (at compile time) -» overflow error
Optional floating point support (at compile time)
Easier to run out of memory » out of memory error

Some features are missing

Future developments

Better tooling, e.g. mix task
Bootloader

Remote shell

More documentation

Future developments

Complete support for binaries
Maps

Supervision trees

Floating point support

Big integer support

An improved standard library
Support for multiple cores
<Your contribution here>

Future developments

Ready to use port drivers for hardware integration
Modules for sensors support

WebAssembly port
Distributed Erlang
Secondary cores as port drivers

Conclusions

Running Elixir on a RaspberryPi (or similar hardware) —» Nerves
Running Erlang/Elixir on a constrained system -» AtomVM
Not all hardware is suitable

Your code needs to be “ported” to run on AtomVM

https://github.com/bettio/AtomVM

41

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

