
Hexes, Charms and Spells
MARK ALLEN – ALERT LOGIC

MRALLEN1@YAHOO.COM - @BYTEMEORG

mailto:mrallen1@yahoo.com

What is Hex?

 https://hex.pm

 Internet facing package service/repository

for Elixir and Erlang software.

Written in Elixir

 Uses the Fastly CDN points of presence for

worldwide distribution. (Thanks Fastly!)

https://hex.pm/

Why do this?

 We have proprietary code we don’t want to publish to

the internet.

 We want to manage our vendored forks of open-source

code.

 We have a common stack of applications we need to

carefully manage.

 Speed and/or politeness (caching frequently fetched

packages from upstream)

Why don’t you host your own hex?

 Requires a database

 Has notions of “user accounts” and “access control”

 IMPORTANT: I am not saying that authentication and

authorization are stupid for all use cases; just that they require a

layer of sophistication that isn’t needed for this application.

 Requires a server with disk space and elixir and an

operating system

 In short, it is a lot of infrastructure I’d rather not manage.

Doesn’t hex already support this?

 Hex has a design specification for “private packages” but
some or all of that functionality is not implemented.

 Seems like it would require putting build artifacts out into the
public Internet. (Even if encrypted and/or strictly access
controlled.)

 As a practical matter, The Management will table flip if you
glibly mention that you’ve uploaded all your secret sauce
apps to an Internet package service.

 “What could possibly go wrong?”

Why can’t you use github?

You can.

You should realize what you are

signing up for in that model.

What are the design goals?

 Simple to install – remember no infrastructure to
manage

 Simple to integrate with cloud services (for
example, storing packages in S3, running code as
“serverless”)

 No (okay, minimal) changes to rebar3

 Proof of concept server is written in *gasp* Python.
Why?

For realz? Python?!

 Yes. Really.

 But why?

 Great client libraries for cloud services

 Really easy to write a simple RESTful web server (e.g.,
bottle)

 erl_terms is a python library which can parse Erlang
file:consult/1 format files and render them into Python
data structures.

rebar3

Recently gave a talk about why you

should use rebar3 and some of its

advanced features.

It’s on YouTube. You should watch it.

Plugin system

https://www.youtube.com/watch?v=6b8XGH8gj18

Rebar3 plugins

 Rebar3 itself is implemented as a large set of “out of the

box” plugins which call functions in some common

library code.

 There are a couple of “built in” plugins that deal with

hex downloads.

 Indices (rebar_prv_update)

 Packages (rebar_pkg_resource)

How rebar3 uses hex package indices

Hex publishes a number of indices.

The index resources are fully

documented by the hex

maintenance team.

Rebar3 uses the “v1” package index

https://github.com/hexpm/specifications

Slight digression about v1/v2 registry

That last side read,

“This is deprecated.”

Why is rebar3 still using it?

The v2 hex registry specification

RSA signed protobuffer encoded data

files

A “names” resource

A “versions” resource

A per-package “package” resource

Such confuse, much sad. Wow.

Slight digression about v1/v2 registry

That last side read,

“This is deprecated.”

Why is rebar3 still using it?

Rebar3 hex index cached on disk

$HOME/.cache/rebar3/hex/default
packages.idx – just the packages rebar3

cares about

registry – comes from upstream

 Loads packages.idx when rebar3 runs

You can explore this yourself using
`ets:file2tab/1`

“

”

I love it when a plan comes

together.

JOHN “HANNIBAL” SMITH, A-TEAM

https://en.wikipedia.org/wiki/John_%22Hannibal%22_Smith

Subverting the rebar3 package index

 We now know the way that rebar3 looks up projects from

hex.

 Modify rebar3 to expect either a serialized ETS table from the

endpoint, or a JSON document with the same data.

 Rebar3 (already) folds over the upstream data to construct its own

package index.

 Rebar3 saves its index to the cache location.

 The cache contents drives decisions about what packages exist.

The hex package format

 A hex package artifact is a tarball consisting of the
following things:

 VERSION (an ASCII digit)

 metadata.config (in `file:consult/1` format)

 contents.tar.gz (the compressed files themselves)

 CHECKSUM (concatenate the three previous files,
calculate SHA256, emit hex values in uppercase.)

 Implementation is in the rebar3_hex plugin.

https://github.com/hexpm/specifications/blob/master/package_tarball.md
https://github.com/tsloughter/rebar3_hex/blob/master/src/rebar3_hex_pkg.erl

Endpoints

GET /registry.ets.gz (from upstream/can
vendor/control updates)

GET /registry.json (not an official
endpoint)

GET /tarballs/PACKAGE-VERSION.tar

POST /packages/{name}/releases
The body is the hex tarball

Putting the pieces together

1. Lightly modified rebar3

2. HEX_CDN environment variable

3. A simple python server implementing the
endpoints

4. ???

5. Profit

So what’s next?

Upstream rebar3 is strongly -1 on this
hack. (I am sympathetic to this
position ☺)

Just because you can do something
doesn’t mean you should do
something.

Solving this issue “the right way”

 Implement hex v2 registry resources in rebar3

 When? Probably in summer 2018.

 Why then? Because we get maps in rebar3.

 How:

 Use the same basic ideas here to collect a set of registry files

from different sources (some private, some public perhaps)

 Overlay the collected resources into a materialized view

Resources

 https://github.com/mrallen1/charm (fair warning, this

repo is a hot mess)

 https://github.com/hexpm/specifications

 https://gist.github.com/mrallen1/b29507badc5c8ad3bd

61b7d2205c42c7 (how to decode hex v2 resources in

Erlang – a work in progress)

 https://github.com/tsloughter/rebar3_hex

https://github.com/mrallen1/charm
https://github.com/hexpm/specifications
https://gist.github.com/mrallen1/b29507badc5c8ad3bd61b7d2205c42c7
https://github.com/tsloughter/rebar3_hex

A final plea

 Please consider putting your libraries on hex.

 Relying on the Lazy Web for your software

recommendations leads to sadness and frustration.

 It makes your project more visible to people who

might have the same problem to solve.

 It’s easy.

 It’s free.

Thank you!

Questions?

Mark Allen – Alert Logic

mrallen1@yahoo.com - @bytemeorg

mailto:mrallen1@yahoo.com

