The
forgotten ideas
N computer science

Joe Armstrong

The
ideas for might have forgotten
or never knew

or

needed reminding
or

should have forgotten

IN

computer science

Joe Armstrong

Work In progress
with a lot of
personal bias

Part 1
motivation

Problems (1980's) 7

* How to find things

* How to store things

W

Plan

e | earn emacs
e | earn unix

* Learn a programming language

What happened?

e | didn't learn emacs
e | didn’t learn unix

* | created a programming language

Some Progress
(after 30 years)

* Finding things
Google and friends (but we find the wrong stuff)

e Saving things
Dropbox and friends (but it not forever, only as long
as your credit card keeps up the payments)

* Programming things
Some small improvements - nothing dramatic
The last new thing was Prolog - no major
improvements since then.

What problems shoulo
we solve now?

Problems (2016) 7

e There is too much stuff
How can we get rid of most of it

 We've invented all this stuff what the heck are we
going to do with it all.
Do we really need [oT? Is it a good idea to hijack
our attention systems every 30 seconds?

Trump Sneezed

IMPORTANT BREAKING NEWS

This Is not a new problem

As with our colleges, so

" el with a hundred "modern
LIFE IN THE WOODS. !mprOVementS . there Is an
By HENRY D. THOREAU, I||USIOn abOUt them; there

IS not always a positive
advance ... Our inventions
are wont to be pretty toys,
which distract our
attention from serious
things.

-l el e | Hen ry David Thoreau
BOSTON: Walden (1854)

TICKNOR AND FIELDS.

M DCCC LIV,

“To a philosopher all news, as it
IS called, Is gossip, and they
who edit and read it are old
women over their tea ..."

“... and as for England, almost
the last significant scrap of
news from that quarter was the
revolution of 1649.”

Henry David Thoreau
Walden (1854)

Methodology

Ask some questions
Get some replies
Organise the result

Choose the best things to do

Questions

Pl o) 3850/1:16:54 & 0O 5] 3

Joe Armstrong & Alan Kay - Joe Armstrong interviews Alan Kay
26,882 views

What ideas has we forgotten”

The forgotten
ideas of computer science

Ask some well-known computer scientists
Ask all the Professors of CS that | know
Ask all my friends who are old and programmers

Think a lot about what I've forgotten

AL.. Joe Armstrong
.S @joeerl

I’m interested in the forgotten ideas of
computer science. Needed for a talk.

Can you post examples of great CS ideas
that have been largely forgotten.

Examples: Linda tuple spaces, Boyer-Moore
algorithm

8:39 AM - 11 Jan 2018

390 Retweets 1,268 Likes ’; —; Q e @ e & t ‘

Q 264 T 390) 1.3K 1]

Tweet Activity

Joe Armstrong ©jocer
I'm interested in the forgotten ideas of computer
science. Needed for a talk.

Can you post examples of great CS ideas that have
been largely forgotten.

Examples: Linda tuple spaces, Boyer-Moore algorithm

Reach a bigger audience
= Get more engagements by promoting this Tweet!

Get started

Impressions
Total engagements

Detail expands
Likes

Profile clicks
Retweets
Replies
Follows

Link clicks

236,207

5,743

2,953
1,268
848
390
264
16

4

And on the next day

Joe Armstrong

¥ yooer!

I'm interested in the forgotten ideas of computer
science. Needed for a talk.

Can you post examples of great CS ideas that have been
largely forgotten.

Examples: Linda tuple spaces, Boyer-Moore algorithm

ENAM .1 s 2008

T @0Tee0 00

1

David JONES

Replying o @)

e, wplay troe, blooen filler, seadeag pepery. all comprler ~ovea®

@ | 950 10 1999, your clepat

Eriang CX

s] 14

T Lesher @ioder Jn
Biooen Sers are <ol In prosy heavy wwe 5 Ty experonce

i 4

Josper L. Andersen @ lostdd T 1)
Tage somung 1+ defainely 2 Wit 1 has some relevance 8 a Noacuosal ageage work! for sy

i i .

sfred @ gfcdey Jan 11

conkd yow prwst me W 8 Pesewrue om Lige sorteg
]

Joaper L. Andersen @ losattt Jas 12
Dom Kouth, The Act of Computer Prograsssng, Volome 3

SO | asked more
gquestions

_ Joe Armstrong
3 7 @joeerl

Also interested in really silly ideas in
Computer Science.

These are ideas that were thought to be
good at the time but which turned out to be
daft.

Which ideas of today will people in 20 years
time say “well that was a really stupid idea”

8:43 AM - 11 Jan 2018

43 Retweets 107 Likes b Q ™ 3 ¢ 9 ‘ g o @

Q 97 0 43 Q 107 [

What started as
‘Forgotten ideas’
became

Forgotten ideas
Silly ideas
Hot research topics

°roblems that non-
orogrammers have

Money making
ideas

Bad ideas

Socially good
projects

Voluntary projects
Fun ideas

Crazy ldeas

SO what started
as forgotten ideas

became a
Lists of topics

or

The essential guide
to computer science
(what you need to learn)
or
A guide for the confused

How to make a list

e Collect lots of items easy
* Assign to lists difficult

* Shorten the lists to N items (N is small) very difficult
Throwing things away is much more difficult than
collecting things - but what's left is better.

Part 2
Things to learn

Essential Guide to CS

e 80 things in 18 categories
(some old, some new, some forgotten)
e Pix and Mix

e Not all equally important

I'll talk about the most important ones
later

80 things to do

e 2 great papers to read

e 4 old tools to learn

e 4 really bad things

e 3 great books to read

® / reasons why software is difficult now

e 10 reasons why software was easier back in the day
e 1 fun programming exercise

e 8 great machines from the past

..and ...

... MMOre

e 3 performance improvements

e 5+ YouTube videos to watch

e 6 things not to do

® 5 sins

e 4 [anguages to learn

e 4 great forgotten ideas

® 0 areas to research

e 2 dangers

¢ 4 ideas that are obvious now but strange at first
e 2 fantastic programs to try

2 great papers to read

CEEs—— The 1980 ACM Turing Award Lecture

Dnlond ol MEM W Nt Tommewas Cuvdbes 7, 190

Ll Y L TS P ———

4 g aen & 1

s e = he ol e ol Gemge
L I ™M™

e Mgt b - o
b M dnakpad s g

e Bl e e

e e I

e gt Bt Sty o s W w—— o
- @ g Syt) e c——

CAR Wawn L L Y L P L U ——

P of Cumgusn Sumee 0 The Qun s - Dot byt b

W e 1900 et w0 Vg Probr o Saniiod Linsawry i 071 Frnen 00

ol Ll L NN S— .y —

Prnkimr Blans S gl sammoty and b on e alinarel bask of & sunber of B sl A
——— w— el S A —
Ftme e Ve & wd Podhe ol he Bk € s o Al e Loy -
o D of Simnn P Comen Wy v Cinrsing of B O "

e D e e et e L S y—————
g iy B s pre— o - Ot of [A M Taring, o Lagheh s be

et e L T p—

The E;nipcmr'siOld Clothes

harbes Ass Ruhard Howre
Ondewd Lnevemery. Eagland

The s v s W ¢ At 0+ o Sgh—— My e wnd et et oty 1 e butem 8 b
st enl e e e e L SR ———
D e e i IS S — I e bl sl T

[Py U — Mot e d - v e B v — e b
A0a) of pragruming laagueges, brusess b e fen o g o ey e W & A oy § ¥

3 W i ———" b g by B
rrad b ahved been amgry denrhed - e
M e st bnmaad o wpmenag e S
oty of y wade | w0 W el s
e L e s I~

W Compton 12200

S - Pt A b e brm e aad e

- J A 1ot 400 em v s S e e Beaha laduss
- —— e v -
- <
- —

e A Plea for Lean Software - Niklaus Wirth

 The Emperor’s old clothes - ACM Turing award
lecture - Tony Hoare

5. The belief that complex systems require armies of
designers and programmers is wrong. A system that
is not understood in its entirety, or at least to a signif-
icant degree of detail by a single individual, should
probably not be built.

Wirth

7. Reducing complexity and size must be the goal in

every step—in system specification, design, and in
detailed programming. A programmer’s competence
should be judged by the ability to find simple solutions,
certainly not by productivity measured in “number of
lines ejected per day.” Prolific programmers contribute
to certain disaster.

. 'To gain experience, there is no substitute for one’s own

programming effort. Organizing a team into man-
agers, designers, programmers, analysts, and users is
detrimental. All should participate (with differing
degrees of emphasis) in all aspects of development. In
particular, everyone—including managers—should
also be product users for a time. This last measure is
the best guarantee to correct mistakes and perhaps
also to eliminate redundancies.

different. At last, there breezed into my office the most
senior manager of all, a general manager of our parent
company, Andrew St. Johnston. I was surprised that he
had even heard of me. “You know what went wrong?”
he shouted—he always shouted— “You let your pro-
grammers do things which you yourself do not under-
stand.” 1 stared in astonishment. He was obviously out
of touch with present day realities. How could one person
ever understand the whole of a modern software product
like the Elliott 503 Mark II software system?

I realized later that he was absolutely right; he had
diagnosed the true cause of the problem and he had
planted the seed of its later solution.

plans (but not promises) to implement it. In no case
would we consider a request for a feature that would
take more than three months to implement and deliver.
H oare The project leader would then have to convince me that
the customers’ request was reasonable, that the design of
the new feature was appropriate, and that the plans and
schedules for implementation were realistic. Above all,
[did not allow anything to be done which I did not
myself understand. It worked! The software requested
began to be delivered on the promised dates. With an

4 old tools to learn

* emacs (Vi)

e pbash

e make

e shell

4 really bad things

Lack of Privacy
Attempts to manipulate us through social media
Vendor Lock In

Terms and Conditions

Show of hands

e |'ve read all the terms and conditions and
understood them

e |'ve read the terms and conditions and didn't
understand them

* | just clicked on accept

3 great books to reao

NOW OVER 9703000 COPIES SOLD

i (3
s BN

AND - .,
INFLUENCE
PEOPLE

BYI]FILE EHHNEI]IE

/ reasons why software Is
difficult now

e Fast machines * Huge programs
e Huge memory * No specitications
 Hundreds of PLs * Reuse

e Distributed

10 reasons why software
was easier back In the day

* Small machines
e Small memory
* Few languages
* Not distributed

e No reuse of code

No Xcode etc

No GIT.

Complete control

Did not communicate

Understandable in it's entirety

iNg exercise

1 fun programm

META II
A SYNTAX-ORIENTED COMPILER WRITING LANGUAGE

A FTwnax

D. V. Schorre
UCLA Computing Facility

B V. Mbor
UCLA Cumpeting Metling
Y.
mormal form and ivte vhioh Lastrmetiome W owipe
e
1. e
The
o o

MR 1T e s compliar writing langwgs vaion
o apvtas

ki

IHT

lith

il

ﬁlﬂ!-ﬂan—n-qﬂ-‘uu—tw

14 e o s slbemetion wiEh S

é
Sy
M |

is

3
i

h
|

i1
8t

Podpaniehd adh o B
SERTE “mm, it .mmmmv_—_
FUTHE R
il il L
R AR eI
T
LR TH T HL i HE
it BRREWEE b
HE _“_.:_m:. mi 1
el a4y Byl Hagyiase .w~ :
_“mnmnm nunnmn i 1zl nmww i
i mwmm.mw wrm_w_m “wmmm _
o§d itidd .nwu m«
il e
~m~m“mm huu_ummmmmwuwmn_m_ “_m o

.-

8 great machines from the
past

 Baby SSEM |IBM PC
« PDP11 * Raspberry P
* Vax 11/750 iPhone/iPad

* Cray 1 « Nvidia Tesla P100

3 performance improvements

e Better algorithms (x 6) (Interpreter -> Compiler)
* Better Programming language (x50) (Prolog -> C)

» Better Hardware (x1000 per 10 years)

5+ Youlube videos to watch

 The computer revolution has not happened yet
Alan Kay

 Computers for Cynics
Ted Nelson

 Free is alie (Aaron Balkan)

 How a handtul of tech companies control billions of minds
every day Tristan Harris (TED-Talk)

* Matt Might - Winning the War on Error: Solving Halting
Problem, Curing Cancer - Code Mesh 2017

o things not to do

Backdoors

Violate privacy

Put microphones in everybody's houses
Hijack our attention system

Hijack our social systems

Sell crap that we dont want or need

5 sINS

Crap documentation
Crap website

Crap dependencies
Crap build instructions

Group think

4 languages to learn

¢ C

* Prolog
* Erlang

e Javascript

4 great forgotten ideas

e Linda Tuple Spaces - David Gelernter and
Nicholas Carriero.

* Flow based programming - John Paul Morrison.
- Xanadu - Ted Nelson

* Unix pipes

Plpes

- The output of my program should be the input
to your program

c A|B|C
* Text-tlows across the boundary

* Killed by GUIs and Apps

APPS

Pads - Tablets - Phones
Human can interact with Apps
Apps can't interact with each other

You are locked inside your Apps. They all do
different things with a varying degree of Success.

6 areas to research

Robotics

Al

Progammer productivity
Energy efficiency
Precision Medicin

Security

2 dangers

e Group think

e Bubble think

4 1deas that are obvious now
but strange at first

e |ndentation
* \ersioning
* Hypertext across machine boundaries

* Pipes

2 fantastic programs to try

e TiddlyWiki (more later)

e SonicPl

Part 3
Important non
computer science

things

learn to write

* A program with excellent documentation is
not going to go anywhere

3 rules at work

* |t you get a bad boss move immediately
do not try to change your boss

* The relationship comes first (Jane Walerud)

* Engage with management

just because they do not understand what you are
saying Is no reason not to talk to them - and whose
fault is it anyway (that they don’t understand you)

/ distractions

Open plan offices

The latest stuff
Twitter/Facebook (social media)
Notifications (turn ‘em off)

Links (don't click on them)

Ban Scrum etc.

We can only do one thing at a time
Our brains are terribly bad at context switching

o6 ways to get your boss to
<program in Erlang>

Do things that gain trust

Tell success stories

Reduce fear of failure

Introduce on a small scale - for a part of the problem
Network with Erlang folks

Make a prototype at home

1 thing to look for when
applying for a new job

* Look at their balance sheet
a company with a positive cash flow and increasing
profits is good to work for - a company that makes

a loss is not good to work for

3 general laws

e Software complexity grows with time (because we
build on old stuff)

 Bad code crowds out good (Gresham’s law)
bad money drives out good (clipping)

 Bad code contaminates good code

| aws of Physics
and matns

3 laws of physics

A computation can only take place when the data and
the program are at the same point in space time => get
all the data + program to the same place (can be client
OR server or someplace in-between) (problem - easy to

move data - difficult to move programs) This is why
PHP is good :-)

* Causality - Effect follows cause. We don’t know how stuff
is we know how it was (the last time it told us)

e 2'nd law thermo dynamics - Entropy (disorder) always
iIncreases

Entropy

e Early Unix (1970) had a very small disk so
programs that were not used were thrown away
(decreases entropy - natural selection)

* (it keeps all old versions (increases entropy -
cancer)

» https://en.wikipedia.org/wiki/Unix_philosophy

https://en.wikipedia.org/wiki/Unix_philosophy

It's all about
Trust ana
Responsibility

Trust Is transitive

e | trust the SW written by Robert
* Robert wrote X

e => | trust X

Can | trust X?

| need a program to do X
| find X Iin github
| do not know who wrote X

Can | trust X?

Responsibility

| reuse X in program P

| ship program P to custom A
A reports an error in P

| am responsable

=> | must trust that P Is correct

User’s Problems

6 common problems

Does not know how to delete files - when the system runs out of
space they buy a new computer

No idea of what MBytes, Mbits, Bbits/sec quad cores etc means
It the app doesn’t work immediately gives up

Does not Google for fixes - or does and does not understand the
ansSwers

Does not want to try the latest things

Uses a method that works (not the best) - ie to copy
a file open word - read the file in then writes it out with a new name

5 more Problems

The Ul changes
Passwords

Stuft doesn’t work
Terms & Conditions

... hon reproducible errors

Helping your non-technical neighbour

e TJell them “it's not your tfault”
e TJell them “it's crap software”
* Jell them “| don't understand this crap either”

* Tell them “computers can’'t do everything”

Part 4
Important
half forgotten BIG
ideas

T'hings can be small

Forth OS 24 KB

Forth compiler 12KB
IBM PC DOS < 640KB
USCD Pascal

Turbo Pascal

Turbo C

The old truths

 Keep it simple

e Make it small

e Make It correct

* Fight complexity

_earning

e Kids can learn computing
* OAPs can learn computing
* Everybody can learn computing

't was easy to learn BASIC back in the 80’s so
why is it more difficult now?

Web IS broken

It's not symmetric
Users read data but write very little

Can every page be changed?

Can | make new data by combining fragments from other data
in a flexible manner? - no

The Web is dominated by a small number of
companies (Amazon, Apple, Goole, Facebook) using huge data
centers, it should be controlled from the edge network.

The original vision was a Web controlled by “citizen
programmers” (Google Ted Nelson talks)

HTML and HT TP have several
problems

* Non symmetric

e Easy to read/difficult to write

 Pages get lost (disappear)

e Links are wrong (404-problem)

* Re-use, attribution, IP rights, payments is a mess

e Controlled by a very small number of companies

Lack of symmetry

The B's know who
the A's are but A
does not know who
the B's are

link

Recovering symmetry

[B1,B2,
B3,B4,B5]

link

WIKI

* Links cannot get lost

 Much better integration - entities are tightly
intertwined (less entropy)

* All in one place

Xanaadu

Like the web but better

No broken links

No difference between readers and writers
Never loose any data

All copyright and attribution correct

Complete knowledge of parents and children

Problems

404 - Not found
A might move to a new server
Server where A is might be down

A cannot be renamead

Part 5
What we can do

Unbreak the web
Make it read/write symmetric

Bring computation to the edge network

Ensure that all personal data is owned by the
individual and not by large corporations

Make computing easy again

Build Apps so they can communicate with each
other

A program that is not secure
and cannot be remotely
controlled should not be written

We’ve given
millions of people
supercomputers -

so let them use them
and ...

It’s your turn next

