Raft in RabbitMC

i

Original talk

Invested in RabbitMQ

Pivotal

Sponsors RabbitMQ development
Provides RabbitMQ services as part of the
Cloud Foundry platform

m RabbitMQ “tile”
Provides commercial support for RabbitMQ

https://www.rabbitmqg.com/services.html

The following feature may
never happen. This is R&D.
No promises.

What is RabbitMQ?

What is RabbitMQ

e Message broker

B—g

Pivotal

What is RabbitMQ

e Messaging broker

e Multi-protocol (AMQP 0-9-1, AMQP 1.0, MQTT, STOMP, ..)
e Started in 2006

e Broad ecosystem including Spring support

® Learn more at rabbitmqg.com

Pivotal

RabbitMQ nodes can form clusters

e Balance load (connections, traffic, I/O, ...) between nodes
e Replicate queue contents

e Tolerate node failures

Pivotal

High Availability in RabbitMQ

RabbitMQ High Availability

e Replication of data and operations

e Message replication is done at the queue level Master Queue

e Called “Queue Mirroring”

e In a cluster of RabbitMQ nodes a queue can

e Provides fail-over and redundancy

Pivotal

RabbitMQ Queue Mirroring

e Internally uses a component called “Guaranteed Multicast” to replicate queue
operations and message data

e Provides replication and total ordering of operations

e Ordering matters:

[ENQ + ENQ + DEQ] = [DEQ + ENQ + ENQ]

Pivotal

Chain Replication

Chain Replication ensures strong consistency and good availability guarantees in
“fail-stop” scenarios.

Chain Replication for Supporting High Throughput and Availability (Robbert van Renesse,
Fred B. Schneider)

http://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf

Pivotal

Chain Replication

Pivotal

RabbitMQ mirrored queue ring

MIRROR . MIRROR =

» MIRROR

Pivotal

RabbitMQ Queue Mirror failure detection

MIRROR
MIRROR
MIRROR

Pivotal

RabbitMQ Mirrored Queue reforms ring

MIRROR
MIRROR

Pivotal

RabbitMQ Queue reforms ring

. MIRROR
MIRROR

Pivotal

RabbitMQ Queue mirror sync

MIRROR
MIRROR
w JF MIRROR
f s MIRROR

Pivotal

RabbitMQ documentation wisdom

Ring
In this ring of six brokers each federated exchange links to just one other in the ring.
"max-hops" property is set to 5 so that every exchange in the ring sees the message

once.

This topology [Ring] through relatively
cheap in queues and connections, is
rather fragile

max_hops=5

This topology, though relatively cheap in queues and connections, is rather fragile

Pivotal

RabbitMQ Queue Mirroring

e Sensitive to network partitions

e Recovery can cause a queue sync (blocking)

® Recovery can cause message loss (jepsen test)

e Replication is a linear algorithm

e Availability relies on fault-detection (which is hard)

e Distributed systems are hard

We can do better!

Pivotal

m We need stronger consistency guarantees and totally
ordered operations

m Predictable behaviour during failure scenarios
m Safe queue master “fail-over”

m Better availability during recovery

Pivotal

Raft

e A group of algorithms for reaching consensus in a distributed system
e Similar problem space to RabbitMQ queue mirroring
e Oriented towards implementers

e Proven
m Multiple implementations
m Industry use
o etcd
o Consul
o CockroachDB

m TLA+ specification

® Requires no external dependencies

Pivotal

Raft provides

m A state machine log abstraction

m Leader-follower model

m State machine log replication

m Well-defined algorithms important
for implementers

m Recovery

Pivotal

FOLLOWER

LEADER

»
FOLLOWER

Raft protocol: replicate entry

Commitindex: 0
State =[]

Pivotal

Raft protocol: reply + commit

Commitindex: 1

State = [ENQ ‘A’]

[oG |
1 ENQ'A’

Pivotal

A raft

Learn more at raft.github.io

Pivotal

http://raft.github.io

How does Raft compare

Taking action

What to do when detecting a (potential) failure?

A. Nothing

e most reliable / least useful
B. Tryto “fix stuff”

e evict down nodes, reform topology

e communicate changes to other nodes
C. The minimum required

® regain/ retain availability and consistency

Pivotal

Raft vs Queue Mirroring failure handling

Raft Queue mirroring

Pivotal

In response to (potential) failure:

Raft either: RabbitMQ queue mirroring:
e Does nothing e Must always do something
e Does the minimum required e Must coordinate taken action

B ensures consistency
m regains availability

Pivotal

Down the rabbit hole

Raft in RabbitMQ

e Can be adopted in multiple areas incrementally
e Area of focus: queue mirroring

e Coordination, leader election
m Cluster federation
m Shovel
m Delayed message exchange

e Message store data replication
m Messages

e Distributed data and state storage
m Internal metadata store (vhosts, users, permissions, queues, ...)

Pivotal

Raft challenges

e The cost of consensus
m Raft requires “stable storage” (fsync)
m Requires a quorum

e Cluster formation
m Seeding
m RabbitMQ internal concern
e Single leader
m Scalability
e Uneven cluster sizes required / recommended

m 3 nodes can tolerate 1 failure
m 4 nodes can tolerate 1 failure (sic!)
m 5 nodes can tolerate 2 failures, and so on...

Pivotal

Announcements

Ra: a Raft library

e By Team RabbitMQ
e Open source
e ASL2 / MPL1.1 licensed

e Generically usable, not tied to
RabbitMQ

e Tailored for RabbitMQ needs

e VVery much a WIP (breaking API
changes are likely)

e https://github.com/rabbitmqg/ra

Pivotal

Ra: implementation

e Raft cluster per queue

e Many queues = many Raft clusters
e Each node writing to it’'s own log file
m Thousands of concurrent fsync operations

m A no-go - we tried it

e Raft is chatty

m High background network usage when idle

Pivotal

Ra: implementation

e Shared Write Ahead Log (WAL)
m fsync in batches

m flushed to raft node specific storage periodically

e Storage engine
m Similar to LSM tree and "append-oriented" stores (LevelDB, RocksDB)

o Compaction is radically simpler in our case

e Per RabbitMQ node “heartbeat” process

m Reduce network background usage

Pivotal

Ra: implementation testing

e Unit & integration testing
e Property-based testing [

m Correctness is essential
e Deployment testing (BOSH)
e Jepsen test

e TLA+ spec for log implementation L[|

Pivotal

Quorum Queue

WIP Quorum queue properties

e Separate queue type (queue args)

e Designed not to lose messages as long as more than half the RabbitMQ nodes can
still be recovered. Strongly consistent. (with publisher confirms)

e Implemented as a Raft replicated state machine
e Replicated to all RabbitMQ nodes (no ha- policies)

e Designed to be available as long as a quorum of RabbitMQ nodes are reachable. (no
queue sync)

Pivotal

WIP Quorum queue trade-offs

Pivotal

Trades latency for throughput
Limited features set

o Doesn’t support policies (maybe ttl, max-len in the future)
Transparently changes “masters” (leaders) when required.
Probably more memory use and longer disk use tail

Only uneven RabbitMQ clusters make sense (3, 5, 7 nodes)

Quorum Queue challenges

RabbitMQ for raft
e All commands are asynchronous
e Flow control and command priorities

e There can be no quorum or partitions on
start / stop

e C(Cluster resize in RabbitMQ style can be hard

Pivotal

Raft for RabbitMQ

Channels must keep track of queue states.

A queue is not a single erlang process
anymore and cannot be monitored

Consumers are a part of the state machine
state.

Queue must have an ID (¥ 262K queues
limit)

RabbitMQ partitioning

e Rabbitmq relies on Mnesia
e Mnesia defines partition recovery
e Quorum queues will not help

e But Raft might

[llustration by

Denise Yu @deniseyu21

Pivotal

4 =)

» me loN -
KECOVE@{ |

da,p\o%& oacss wuthge
| AvILAB|LITY EONES.

@V?“’j@

KN

N@‘es n M# &
W\O‘jo"hj Wh,.,_,a

we Y

TV e

When will it ship

e Maybe never - but as soon as it is done

e Need to pass strict acceptance criteria (data safety, performance, RabbitMQ
integration).

e If it ships it will be an optional feature

e The “classic” queue will still be the default

Pivotal

Summary

Pivotal

RabbitMQ queue mirroring has fundamental problems
Raft covers a very similar problem space

New design promises lots of improvements &
Implementing Raft is non-trivial
github.com/rabbitmqg/ra

“quorum-queue” branch

We are still learning

Distributed systems are still hard

Thank you

Daniil Fedotov
GitHub: hairyhum
Twitter: @hairyhum_

rabbitmg-users (a Google group)

© Copyright 2018 Pivotal Software, Inc. All rights Reserved. Version 1.0

