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Pivotal and 
RabbitMQ

Invested in RabbitMQ

■ Sponsors RabbitMQ development

■ Provides RabbitMQ services as part of the            

Cloud Foundry platform

■ RabbitMQ “tile”

■ Provides commercial support for RabbitMQ

■ https://www.rabbitmq.com/services.html 



The following feature may 
never happen. This is R&D. 
No promises.



What is RabbitMQ?



What is RabbitMQ

● Message broker

Publisher Consumer

Consumer



What is RabbitMQ

● Messaging broker

● Multi-protocol (AMQP 0-9-1, AMQP 1.0, MQTT, STOMP, …)

● Started in 2006

● Broad ecosystem including Spring support

● Learn more at rabbitmq.com



RabbitMQ nodes can form clusters

● Balance load (connections, traffic, I/O, …) between nodes

● Replicate queue contents

● Tolerate node failures



High Availability in RabbitMQ
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RabbitMQ High Availability

Rabbit 1
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Rabbit 2 Rabbit 3
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Master Queue

Mirror Queues

● Replication of data and operations

● Message replication is done at the queue level

● Called “Queue Mirroring”

● In a cluster of RabbitMQ nodes a queue can 
have a mirror on one or more nodes

● Provides fail-over and redundancy



RabbitMQ Queue Mirroring

● Internally uses a component called “Guaranteed Multicast” to replicate queue 
operations and message data

● Provides replication and total ordering of operations

● Ordering matters:

       [ENQ + ENQ + DEQ] != [DEQ + ENQ + ENQ]



Chain Replication

Chain Replication ensures strong consistency and good availability guarantees in 
“fail-stop” scenarios.

Chain Replication for Supporting High Throughput and Availability (Robbert van Renesse, 
Fred B. Schneider)

http://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf



Chain Replication

HEAD TAIL

READWRITE



RabbitMQ mirrored queue ring

MASTER MIRROR MIRROR MIRROR MIRROR

DELIVERPUBLISH



RabbitMQ Queue Mirror failure detection
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Needs timely fault detection



RabbitMQ Mirrored Queue reforms ring
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RabbitMQ Queue reforms ring

MASTER

MIRROR
MIRROR

MIRROR

MIRROR

PUBLISH DELIVER

It’s complicated...

I was only gone a 
minute. Can I 
re-join?



RabbitMQ Queue mirror sync
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This topology [Ring] through relatively 
cheap in queues and connections, is 

rather fragile

RabbitMQ documentation wisdom



RabbitMQ Queue Mirroring

● Sensitive to network partitions

● Recovery can cause a queue sync (blocking)

● Recovery can cause message loss (jepsen test)

● Replication is a linear algorithm

● Availability relies on fault-detection (which is hard)

● Distributed systems are hard

We can do better!



Road to Raft ■ We need stronger consistency guarantees and totally 
ordered operations

■ Predictable behaviour during failure scenarios

■ Safe queue master “fail-over”

■ Better availability during recovery



Raft
● A group of algorithms for reaching consensus in a distributed system

● Similar problem space to RabbitMQ queue mirroring

● Oriented towards implementers

● Proven
■ Multiple implementations
■ Industry use

○ etcd
○ Consul
○ CockroachDB

■ TLA+ specification

● Requires no external dependencies
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Raft provides

■ A state machine log abstraction

■ Leader-follower model

■ State machine log replication

■ Well-defined algorithms important 

for implementers

■ Recovery

FOLLOWER

LEADER

FOLLOWER



Raft protocol: replicate entry

FOLLOWER

LEADER

FOLLOWER

ENQ ‘A’

LOG

1 ENQ ‘A’

CommitIndex: 0
State = []

AppendEntriesRpc { Entries = [1, ENQ ‘A’] }

AppendEntriesRpc { Entries = [1, ENQ ‘A’] }



Raft protocol: reply + commit

FOLLOWER

LEADER

FOLLOWER

OK

LOG

1 ENQ ‘A’

CommitIndex: 0
State = []
CommitIndex: 1
State = [ENQ ‘A’]

AppendEntriesReply { Success = true }



A raft

Learn more at raft.github.io

http://raft.github.io


How does Raft compare



Taking action
What to do when detecting a (potential) failure?

A. Nothing

● most reliable / least useful

B. Try to “fix stuff”

● evict down nodes, reform topology

● communicate changes to other nodes

C. The minimum required

● regain / retain availability and consistency



Raft vs Queue Mirroring failure handling
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Raft Queue mirroring



In response to (potential) failure:

Raft either:

● Does nothing
● Does the minimum required

■ ensures consistency
■ regains availability

RabbitMQ queue mirroring:

● Must always do something
● Must coordinate taken action



Down the rabbit hole



Raft in RabbitMQ

● Can be adopted in multiple areas incrementally

● Area of focus: queue mirroring

● Coordination, leader election
■ Cluster federation
■ Shovel
■ Delayed message exchange

● Message store data replication
■ Messages

● Distributed data and state storage
■ Internal metadata store (vhosts, users, permissions, queues, …)



Raft challenges
● The cost of consensus

■ Raft requires “stable storage” (fsync)
■ Requires a quorum

● Cluster formation
■ Seeding
■ RabbitMQ internal concern

● Single leader
■ Scalability

● Uneven cluster sizes required / recommended

■ 3 nodes can tolerate 1 failure
■ 4 nodes can tolerate 1 failure (sic!)
■ 5 nodes can tolerate 2 failures, and so on…



Announcements
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Ra: a Raft library

● By Team RabbitMQ

● Open source

● ASL2 / MPL1.1 licensed

● Generically usable, not tied to 
RabbitMQ

● Tailored for RabbitMQ needs

● Very much a WIP (breaking API 
changes are likely)

● https://github.com/rabbitmq/ra



Ra: implementation

● Raft cluster per queue

● Many queues = many Raft clusters

● Each node writing to it’s own log file

■ Thousands of concurrent fsync operations

■ A no-go - we tried it

● Raft is chatty

■ High background network usage when idle



Ra: implementation

● Shared Write Ahead Log (WAL)

■ fsync in batches

■ flushed to raft node specific storage periodically

● Storage engine

■ Similar to LSM tree and "append-oriented" stores (LevelDB, RocksDB)

○ Compaction is radically simpler in our case

● Per RabbitMQ node “heartbeat” process

■ Reduce network background usage



Ra: implementation testing

● Unit & integration testing

● Property-based testing �

■ Correctness is essential

● Deployment testing (BOSH)

● Jepsen test

● TLA+ spec for log implementation �



Quorum Queue

Your data safety is our priority



WIP Quorum queue properties

● Separate queue type (queue args)

● Designed not to lose messages as long as more than half the RabbitMQ nodes can 
still be recovered. Strongly consistent. (with publisher confirms)

● Implemented as a Raft replicated state machine

● Replicated to all RabbitMQ nodes (no ha- policies)

● Designed to be available as long as a quorum of RabbitMQ nodes are reachable. (no 
queue sync)



● Trades latency for throughput

● Limited features set

○ Doesn’t support policies (maybe ttl, max-len in the future)

● Transparently changes “masters” (leaders) when required.

● Probably more memory use and longer disk use tail

● Only uneven RabbitMQ clusters make sense (3, 5, 7 nodes)

WIP Quorum queue trade-offs



RabbitMQ for raft

● All commands are asynchronous

● Flow control and command priorities

● There can be no quorum or partitions on 
start / stop

● Cluster resize in RabbitMQ style can be hard

Quorum Queue challenges

Raft for RabbitMQ

● Channels must keep track of queue states.

● A queue is not a single erlang process 
anymore and cannot be monitored

● Consumers are a part of the state machine 
state.

● Queue must have an ID (~ 262K queues 
limit)



RabbitMQ partitioning

● Rabbitmq relies on Mnesia

● Mnesia defines partition recovery

● Quorum queues will not help

● But Raft might

Illustration by

Denise Yu @deniseyu21



When will it ship

● Maybe never - but as soon as it is done

● Need to pass strict acceptance criteria (data safety, performance, RabbitMQ 
integration).

● If it ships it will be an optional feature

● The “classic” queue will still be the default



Summary
● RabbitMQ queue mirroring has fundamental problems

● Raft covers a very similar problem space

● New design promises lots of improvements ʠ

● Implementing Raft is non-trivial

● github.com/rabbitmq/ra

● “quorum-queue” branch

● We are still learning

● Distributed systems are still hard
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rabbitmq-users (a Google group)

Thank you


